Loading…
Transformation of a Mamdani FIS to First Order Sugeno FIS
In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Jassbi, J. Alavi, S.H. Serra, P.J.A. Ribeiro, R.A. |
description | In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches. |
doi_str_mv | 10.1109/FUZZY.2007.4295331 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4295331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4295331</ieee_id><sourcerecordid>4295331</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7145bcc43291dfd5f9860e613488a831f5442e3685ff40c2e735f2ecddf446a23</originalsourceid><addsrcrecordid>eNotT8FOwzAUC2JIjNEfgEt-oCUveWmSI5romLRph5UDu0yhSVAQbVFaDvw9RdQXy7Jsy4TcASsAmHmoXk6n14IzpgrkRgoBFyQzSgNyRODA5CW5mQUzZkGWU0rnSmq8JtkwfLAJBgGlWhJTJ9sNoU-tHWPf0T5QS_e2dbaLtNoe6djTKqZhpIfkfKLH73ff9X_OLbkK9nPw2cwrUldP9fo53x022_XjLo-GjbmaZt6aBgU34IKTweiS-RIEam21gCARuRelliEga7hXQgbuG-cCYmm5WJH7_9rovT9_pdja9HOej4tfqktICg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Transformation of a Mamdani FIS to First Order Sugeno FIS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jassbi, J. ; Alavi, S.H. ; Serra, P.J.A. ; Ribeiro, R.A.</creator><creatorcontrib>Jassbi, J. ; Alavi, S.H. ; Serra, P.J.A. ; Ribeiro, R.A.</creatorcontrib><description>In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1424412099</identifier><identifier>ISBN: 9781424412099</identifier><identifier>EISBN: 9781424412105</identifier><identifier>EISBN: 1424412102</identifier><identifier>DOI: 10.1109/FUZZY.2007.4295331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; Fuzzy logic ; Fuzzy set theory ; Fuzzy systems ; Genetic algorithms ; Inference algorithms ; Knowledge based systems ; Least squares methods ; Optimization methods ; Robustness</subject><ispartof>2007 IEEE International Fuzzy Systems Conference, 2007, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4295331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4295331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jassbi, J.</creatorcontrib><creatorcontrib>Alavi, S.H.</creatorcontrib><creatorcontrib>Serra, P.J.A.</creatorcontrib><creatorcontrib>Ribeiro, R.A.</creatorcontrib><title>Transformation of a Mamdani FIS to First Order Sugeno FIS</title><title>2007 IEEE International Fuzzy Systems Conference</title><addtitle>FUZZY</addtitle><description>In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches.</description><subject>Computational efficiency</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Inference algorithms</subject><subject>Knowledge based systems</subject><subject>Least squares methods</subject><subject>Optimization methods</subject><subject>Robustness</subject><issn>1098-7584</issn><isbn>1424412099</isbn><isbn>9781424412099</isbn><isbn>9781424412105</isbn><isbn>1424412102</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8FOwzAUC2JIjNEfgEt-oCUveWmSI5romLRph5UDu0yhSVAQbVFaDvw9RdQXy7Jsy4TcASsAmHmoXk6n14IzpgrkRgoBFyQzSgNyRODA5CW5mQUzZkGWU0rnSmq8JtkwfLAJBgGlWhJTJ9sNoU-tHWPf0T5QS_e2dbaLtNoe6djTKqZhpIfkfKLH73ff9X_OLbkK9nPw2cwrUldP9fo53x022_XjLo-GjbmaZt6aBgU34IKTweiS-RIEam21gCARuRelliEga7hXQgbuG-cCYmm5WJH7_9rovT9_pdja9HOej4tfqktICg</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Jassbi, J.</creator><creator>Alavi, S.H.</creator><creator>Serra, P.J.A.</creator><creator>Ribeiro, R.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>Transformation of a Mamdani FIS to First Order Sugeno FIS</title><author>Jassbi, J. ; Alavi, S.H. ; Serra, P.J.A. ; Ribeiro, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7145bcc43291dfd5f9860e613488a831f5442e3685ff40c2e735f2ecddf446a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational efficiency</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Inference algorithms</topic><topic>Knowledge based systems</topic><topic>Least squares methods</topic><topic>Optimization methods</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Jassbi, J.</creatorcontrib><creatorcontrib>Alavi, S.H.</creatorcontrib><creatorcontrib>Serra, P.J.A.</creatorcontrib><creatorcontrib>Ribeiro, R.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jassbi, J.</au><au>Alavi, S.H.</au><au>Serra, P.J.A.</au><au>Ribeiro, R.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transformation of a Mamdani FIS to First Order Sugeno FIS</atitle><btitle>2007 IEEE International Fuzzy Systems Conference</btitle><stitle>FUZZY</stitle><date>2007-06</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1098-7584</issn><isbn>1424412099</isbn><isbn>9781424412099</isbn><eisbn>9781424412105</eisbn><eisbn>1424412102</eisbn><abstract>In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2007.4295331</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7584 |
ispartof | 2007 IEEE International Fuzzy Systems Conference, 2007, p.1-6 |
issn | 1098-7584 |
language | eng |
recordid | cdi_ieee_primary_4295331 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational efficiency Fuzzy logic Fuzzy set theory Fuzzy systems Genetic algorithms Inference algorithms Knowledge based systems Least squares methods Optimization methods Robustness |
title | Transformation of a Mamdani FIS to First Order Sugeno FIS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transformation%20of%20a%20Mamdani%20FIS%20to%20First%20Order%20Sugeno%20FIS&rft.btitle=2007%20IEEE%20International%20Fuzzy%20Systems%20Conference&rft.au=Jassbi,%20J.&rft.date=2007-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1098-7584&rft.isbn=1424412099&rft.isbn_list=9781424412099&rft_id=info:doi/10.1109/FUZZY.2007.4295331&rft.eisbn=9781424412105&rft.eisbn_list=1424412102&rft_dat=%3Cieee_6IE%3E4295331%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7145bcc43291dfd5f9860e613488a831f5442e3685ff40c2e735f2ecddf446a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4295331&rfr_iscdi=true |