Loading…

Transformation of a Mamdani FIS to First Order Sugeno FIS

In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to...

Full description

Saved in:
Bibliographic Details
Main Authors: Jassbi, J., Alavi, S.H., Serra, P.J.A., Ribeiro, R.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Jassbi, J.
Alavi, S.H.
Serra, P.J.A.
Ribeiro, R.A.
description In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches.
doi_str_mv 10.1109/FUZZY.2007.4295331
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4295331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4295331</ieee_id><sourcerecordid>4295331</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7145bcc43291dfd5f9860e613488a831f5442e3685ff40c2e735f2ecddf446a23</originalsourceid><addsrcrecordid>eNotT8FOwzAUC2JIjNEfgEt-oCUveWmSI5romLRph5UDu0yhSVAQbVFaDvw9RdQXy7Jsy4TcASsAmHmoXk6n14IzpgrkRgoBFyQzSgNyRODA5CW5mQUzZkGWU0rnSmq8JtkwfLAJBgGlWhJTJ9sNoU-tHWPf0T5QS_e2dbaLtNoe6djTKqZhpIfkfKLH73ff9X_OLbkK9nPw2cwrUldP9fo53x022_XjLo-GjbmaZt6aBgU34IKTweiS-RIEam21gCARuRelliEga7hXQgbuG-cCYmm5WJH7_9rovT9_pdja9HOej4tfqktICg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Transformation of a Mamdani FIS to First Order Sugeno FIS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jassbi, J. ; Alavi, S.H. ; Serra, P.J.A. ; Ribeiro, R.A.</creator><creatorcontrib>Jassbi, J. ; Alavi, S.H. ; Serra, P.J.A. ; Ribeiro, R.A.</creatorcontrib><description>In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1424412099</identifier><identifier>ISBN: 9781424412099</identifier><identifier>EISBN: 9781424412105</identifier><identifier>EISBN: 1424412102</identifier><identifier>DOI: 10.1109/FUZZY.2007.4295331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; Fuzzy logic ; Fuzzy set theory ; Fuzzy systems ; Genetic algorithms ; Inference algorithms ; Knowledge based systems ; Least squares methods ; Optimization methods ; Robustness</subject><ispartof>2007 IEEE International Fuzzy Systems Conference, 2007, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4295331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4295331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jassbi, J.</creatorcontrib><creatorcontrib>Alavi, S.H.</creatorcontrib><creatorcontrib>Serra, P.J.A.</creatorcontrib><creatorcontrib>Ribeiro, R.A.</creatorcontrib><title>Transformation of a Mamdani FIS to First Order Sugeno FIS</title><title>2007 IEEE International Fuzzy Systems Conference</title><addtitle>FUZZY</addtitle><description>In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches.</description><subject>Computational efficiency</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Inference algorithms</subject><subject>Knowledge based systems</subject><subject>Least squares methods</subject><subject>Optimization methods</subject><subject>Robustness</subject><issn>1098-7584</issn><isbn>1424412099</isbn><isbn>9781424412099</isbn><isbn>9781424412105</isbn><isbn>1424412102</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8FOwzAUC2JIjNEfgEt-oCUveWmSI5romLRph5UDu0yhSVAQbVFaDvw9RdQXy7Jsy4TcASsAmHmoXk6n14IzpgrkRgoBFyQzSgNyRODA5CW5mQUzZkGWU0rnSmq8JtkwfLAJBgGlWhJTJ9sNoU-tHWPf0T5QS_e2dbaLtNoe6djTKqZhpIfkfKLH73ff9X_OLbkK9nPw2cwrUldP9fo53x022_XjLo-GjbmaZt6aBgU34IKTweiS-RIEam21gCARuRelliEga7hXQgbuG-cCYmm5WJH7_9rovT9_pdja9HOej4tfqktICg</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Jassbi, J.</creator><creator>Alavi, S.H.</creator><creator>Serra, P.J.A.</creator><creator>Ribeiro, R.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>Transformation of a Mamdani FIS to First Order Sugeno FIS</title><author>Jassbi, J. ; Alavi, S.H. ; Serra, P.J.A. ; Ribeiro, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7145bcc43291dfd5f9860e613488a831f5442e3685ff40c2e735f2ecddf446a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational efficiency</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Inference algorithms</topic><topic>Knowledge based systems</topic><topic>Least squares methods</topic><topic>Optimization methods</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Jassbi, J.</creatorcontrib><creatorcontrib>Alavi, S.H.</creatorcontrib><creatorcontrib>Serra, P.J.A.</creatorcontrib><creatorcontrib>Ribeiro, R.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jassbi, J.</au><au>Alavi, S.H.</au><au>Serra, P.J.A.</au><au>Ribeiro, R.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transformation of a Mamdani FIS to First Order Sugeno FIS</atitle><btitle>2007 IEEE International Fuzzy Systems Conference</btitle><stitle>FUZZY</stitle><date>2007-06</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1098-7584</issn><isbn>1424412099</isbn><isbn>9781424412099</isbn><eisbn>9781424412105</eisbn><eisbn>1424412102</eisbn><abstract>In many decision support applications, it is important to guarantee the expressive power, easy formalization and interpretability of Mamdani-type fuzzy inference systems (FIS), while ensuring the computational efficiency and accuracy of Sugeno-type FIS. Hence, in this paper we present an approach to transform a Mamdani-type FIS into a Sugeno-type FIS. We consider the problem of mapping Mamdani FIS to Sugeno FIS as an optimization problem and by determining the first order Sugeno parameters, the transformation is achieved. To solve this optimization problem we compare three methods: least squares, genetic algorithms and an adaptive neuro-fuzzy inference system. An illustrative example is presented to discuss the approaches.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2007.4295331</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2007 IEEE International Fuzzy Systems Conference, 2007, p.1-6
issn 1098-7584
language eng
recordid cdi_ieee_primary_4295331
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational efficiency
Fuzzy logic
Fuzzy set theory
Fuzzy systems
Genetic algorithms
Inference algorithms
Knowledge based systems
Least squares methods
Optimization methods
Robustness
title Transformation of a Mamdani FIS to First Order Sugeno FIS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transformation%20of%20a%20Mamdani%20FIS%20to%20First%20Order%20Sugeno%20FIS&rft.btitle=2007%20IEEE%20International%20Fuzzy%20Systems%20Conference&rft.au=Jassbi,%20J.&rft.date=2007-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1098-7584&rft.isbn=1424412099&rft.isbn_list=9781424412099&rft_id=info:doi/10.1109/FUZZY.2007.4295331&rft.eisbn=9781424412105&rft.eisbn_list=1424412102&rft_dat=%3Cieee_6IE%3E4295331%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7145bcc43291dfd5f9860e613488a831f5442e3685ff40c2e735f2ecddf446a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4295331&rfr_iscdi=true