Loading…
Identification Information Analysis of Sample Train Set Subspace
Principal component analysis (PCA) which is widely used in pattern recognition field aims at reducing the dimension of sample. PCA replaces variables in the original sample vectors that have redundant information with fewer integrative variables. The recognition ability used author's algorithm...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 638 |
container_issue | |
container_start_page | 633 |
container_title | |
container_volume | |
creator | XiangFei Fu Jiliu Zhou FangNian Lang |
description | Principal component analysis (PCA) which is widely used in pattern recognition field aims at reducing the dimension of sample. PCA replaces variables in the original sample vectors that have redundant information with fewer integrative variables. The recognition ability used author's algorithm is tested in the paper. It is proved that zerospace do not include any identification information which would be useful for distinguishing different samples. Experiment results based of our lab's facebase and ORL face base shows the theory is right. |
doi_str_mv | 10.1109/ICIG.2007.167 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4297160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4297160</ieee_id><sourcerecordid>4297160</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-81a92ddaae89e35bf0f673a6dad6bedc3963836a688e21f4d9d2bff5c3cde2b93</originalsourceid><addsrcrecordid>eNotjLtqwzAUQAWl0JJ67NRFP2BXD1vS3RpMmxoCGZzO4dq6AhW_sNwhf99CepZzpsPYsxSFlAJem7o5FEoIW0hj71gG1glroFKgoHpgWUrf4g8NpVXukb01nqYthtjjFueJN1OY1_HW-wmHa4qJz4G3OC4D8fOKceItbbz96dKCPT2x-4BDouzfO_b18X6uP_Pj6dDU-2Mepa223EkE5T0iOSBddUEEYzUaj9505HsNRjtt0DhHSobSg1ddCFWve0-qA71jL7dvJKLLssYR1-ulVGClEfoXBdBItw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identification Information Analysis of Sample Train Set Subspace</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>XiangFei Fu ; Jiliu Zhou ; FangNian Lang</creator><creatorcontrib>XiangFei Fu ; Jiliu Zhou ; FangNian Lang</creatorcontrib><description>Principal component analysis (PCA) which is widely used in pattern recognition field aims at reducing the dimension of sample. PCA replaces variables in the original sample vectors that have redundant information with fewer integrative variables. The recognition ability used author's algorithm is tested in the paper. It is proved that zerospace do not include any identification information which would be useful for distinguishing different samples. Experiment results based of our lab's facebase and ORL face base shows the theory is right.</description><identifier>ISBN: 9780769529295</identifier><identifier>ISBN: 0769529291</identifier><identifier>DOI: 10.1109/ICIG.2007.167</identifier><language>eng</language><publisher>IEEE</publisher><subject>Eigenvalues and eigenfunctions ; Face recognition ; Feature extraction ; Frequency ; Image coding ; Information analysis ; Partitioning algorithms ; Pattern recognition ; Principal component analysis ; Testing</subject><ispartof>Fourth International Conference on Image and Graphics (ICIG 2007), 2007, p.633-638</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4297160$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4297160$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>XiangFei Fu</creatorcontrib><creatorcontrib>Jiliu Zhou</creatorcontrib><creatorcontrib>FangNian Lang</creatorcontrib><title>Identification Information Analysis of Sample Train Set Subspace</title><title>Fourth International Conference on Image and Graphics (ICIG 2007)</title><addtitle>ICIG</addtitle><description>Principal component analysis (PCA) which is widely used in pattern recognition field aims at reducing the dimension of sample. PCA replaces variables in the original sample vectors that have redundant information with fewer integrative variables. The recognition ability used author's algorithm is tested in the paper. It is proved that zerospace do not include any identification information which would be useful for distinguishing different samples. Experiment results based of our lab's facebase and ORL face base shows the theory is right.</description><subject>Eigenvalues and eigenfunctions</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Frequency</subject><subject>Image coding</subject><subject>Information analysis</subject><subject>Partitioning algorithms</subject><subject>Pattern recognition</subject><subject>Principal component analysis</subject><subject>Testing</subject><isbn>9780769529295</isbn><isbn>0769529291</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjLtqwzAUQAWl0JJ67NRFP2BXD1vS3RpMmxoCGZzO4dq6AhW_sNwhf99CepZzpsPYsxSFlAJem7o5FEoIW0hj71gG1glroFKgoHpgWUrf4g8NpVXukb01nqYthtjjFueJN1OY1_HW-wmHa4qJz4G3OC4D8fOKceItbbz96dKCPT2x-4BDouzfO_b18X6uP_Pj6dDU-2Mepa223EkE5T0iOSBddUEEYzUaj9505HsNRjtt0DhHSobSg1ddCFWve0-qA71jL7dvJKLLssYR1-ulVGClEfoXBdBItw</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>XiangFei Fu</creator><creator>Jiliu Zhou</creator><creator>FangNian Lang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Identification Information Analysis of Sample Train Set Subspace</title><author>XiangFei Fu ; Jiliu Zhou ; FangNian Lang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-81a92ddaae89e35bf0f673a6dad6bedc3963836a688e21f4d9d2bff5c3cde2b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Eigenvalues and eigenfunctions</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Frequency</topic><topic>Image coding</topic><topic>Information analysis</topic><topic>Partitioning algorithms</topic><topic>Pattern recognition</topic><topic>Principal component analysis</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>XiangFei Fu</creatorcontrib><creatorcontrib>Jiliu Zhou</creatorcontrib><creatorcontrib>FangNian Lang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XiangFei Fu</au><au>Jiliu Zhou</au><au>FangNian Lang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification Information Analysis of Sample Train Set Subspace</atitle><btitle>Fourth International Conference on Image and Graphics (ICIG 2007)</btitle><stitle>ICIG</stitle><date>2007-08</date><risdate>2007</risdate><spage>633</spage><epage>638</epage><pages>633-638</pages><isbn>9780769529295</isbn><isbn>0769529291</isbn><abstract>Principal component analysis (PCA) which is widely used in pattern recognition field aims at reducing the dimension of sample. PCA replaces variables in the original sample vectors that have redundant information with fewer integrative variables. The recognition ability used author's algorithm is tested in the paper. It is proved that zerospace do not include any identification information which would be useful for distinguishing different samples. Experiment results based of our lab's facebase and ORL face base shows the theory is right.</abstract><pub>IEEE</pub><doi>10.1109/ICIG.2007.167</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769529295 |
ispartof | Fourth International Conference on Image and Graphics (ICIG 2007), 2007, p.633-638 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4297160 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Eigenvalues and eigenfunctions Face recognition Feature extraction Frequency Image coding Information analysis Partitioning algorithms Pattern recognition Principal component analysis Testing |
title | Identification Information Analysis of Sample Train Set Subspace |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20Information%20Analysis%20of%20Sample%20Train%20Set%20Subspace&rft.btitle=Fourth%20International%20Conference%20on%20Image%20and%20Graphics%20(ICIG%202007)&rft.au=XiangFei%20Fu&rft.date=2007-08&rft.spage=633&rft.epage=638&rft.pages=633-638&rft.isbn=9780769529295&rft.isbn_list=0769529291&rft_id=info:doi/10.1109/ICIG.2007.167&rft_dat=%3Cieee_6IE%3E4297160%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-81a92ddaae89e35bf0f673a6dad6bedc3963836a688e21f4d9d2bff5c3cde2b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4297160&rfr_iscdi=true |