Loading…

Validation of Worst-Case and Statistical Models for an Automotive EMC Expert System

Previous papers have presented algorithms for an EMC expert system used to predict potential electromagnetic compatibility problems in a vehicle early in the design process. Here, the accuracy of inductive and capacitive coupling algorithms are verified through representative measurements of crossta...

Full description

Saved in:
Bibliographic Details
Main Authors: Beetner, D.G., Haixiao Weng, Meilin Wu, Hubing, T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Beetner, D.G.
Haixiao Weng
Meilin Wu
Hubing, T.
description Previous papers have presented algorithms for an EMC expert system used to predict potential electromagnetic compatibility problems in a vehicle early in the design process. Here, the accuracy of inductive and capacitive coupling algorithms are verified through representative measurements of crosstalk within an automobile. Worst-case estimates used by the algorithms are compared to measured values and are compared to values estimated using statistical methods. The worst-case algorithms performed well up to 10-20 MHz, but overestimated measured results by several dB in some cases and up to 10-15 dB in others. An approximate statistical variation of the current expert system algorithms also worked well and can help avoid overestimation of problems; however, worst-case estimates better ensure that problems will not be missed, especially in the absence of complete system information.
doi_str_mv 10.1109/ISEMC.2007.34
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4305614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4305614</ieee_id><sourcerecordid>4305614</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2e92f726d6e71b3f8bdd633afe07e6bf4136cc9f08ecba9e3f2bf7478cdd60f13</originalsourceid><addsrcrecordid>eNo9zr1OwzAUBWDzJ1FKRyYWv0DKvbZrJ2MVtVCpFUMqYKuc5FoySusqNoi-PZFAnc7wHR0dxh4QpohQPK2qxaacCgAzleqC3aESSqGcQX7JRgJneYaI-dUZVKGuzwAft2wS4ycAoNEKRTFi1ZvtfGuTDwceHH8PfUxZaSNxe2h5lQaJyTe245vQUhe5C_1AfP6Vwj4k_018eMQXP0fqE69OMdH-nt0420Wa_OeYbZeLbfmSrV-fV-V8nfkCUiaoEM4I3WoyWEuX122rpbSOwJCu3fBeN03hIKemtgVJJ2pnlMmboQcO5Zg9_s16Itode7-3_WmnJMw0KvkLya1T2w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validation of Worst-Case and Statistical Models for an Automotive EMC Expert System</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Beetner, D.G. ; Haixiao Weng ; Meilin Wu ; Hubing, T.</creator><creatorcontrib>Beetner, D.G. ; Haixiao Weng ; Meilin Wu ; Hubing, T.</creatorcontrib><description>Previous papers have presented algorithms for an EMC expert system used to predict potential electromagnetic compatibility problems in a vehicle early in the design process. Here, the accuracy of inductive and capacitive coupling algorithms are verified through representative measurements of crosstalk within an automobile. Worst-case estimates used by the algorithms are compared to measured values and are compared to values estimated using statistical methods. The worst-case algorithms performed well up to 10-20 MHz, but overestimated measured results by several dB in some cases and up to 10-15 dB in others. An approximate statistical variation of the current expert system algorithms also worked well and can help avoid overestimation of problems; however, worst-case estimates better ensure that problems will not be missed, especially in the absence of complete system information.</description><identifier>ISSN: 2158-110X</identifier><identifier>ISBN: 1424413494</identifier><identifier>ISBN: 9781424413492</identifier><identifier>EISSN: 2158-1118</identifier><identifier>EISBN: 1424413508</identifier><identifier>EISBN: 9781424413508</identifier><identifier>DOI: 10.1109/ISEMC.2007.34</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Automobiles ; Automotive engineering ; Crosstalk ; Electromagnetic compatibility ; Electromagnetic measurements ; Expert systems ; Process design ; Statistical analysis ; Vehicles</subject><ispartof>2007 IEEE International Symposium on Electromagnetic Compatibility, 2007, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4305614$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4305614$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beetner, D.G.</creatorcontrib><creatorcontrib>Haixiao Weng</creatorcontrib><creatorcontrib>Meilin Wu</creatorcontrib><creatorcontrib>Hubing, T.</creatorcontrib><title>Validation of Worst-Case and Statistical Models for an Automotive EMC Expert System</title><title>2007 IEEE International Symposium on Electromagnetic Compatibility</title><addtitle>ISEMC</addtitle><description>Previous papers have presented algorithms for an EMC expert system used to predict potential electromagnetic compatibility problems in a vehicle early in the design process. Here, the accuracy of inductive and capacitive coupling algorithms are verified through representative measurements of crosstalk within an automobile. Worst-case estimates used by the algorithms are compared to measured values and are compared to values estimated using statistical methods. The worst-case algorithms performed well up to 10-20 MHz, but overestimated measured results by several dB in some cases and up to 10-15 dB in others. An approximate statistical variation of the current expert system algorithms also worked well and can help avoid overestimation of problems; however, worst-case estimates better ensure that problems will not be missed, especially in the absence of complete system information.</description><subject>Algorithm design and analysis</subject><subject>Automobiles</subject><subject>Automotive engineering</subject><subject>Crosstalk</subject><subject>Electromagnetic compatibility</subject><subject>Electromagnetic measurements</subject><subject>Expert systems</subject><subject>Process design</subject><subject>Statistical analysis</subject><subject>Vehicles</subject><issn>2158-110X</issn><issn>2158-1118</issn><isbn>1424413494</isbn><isbn>9781424413492</isbn><isbn>1424413508</isbn><isbn>9781424413508</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9zr1OwzAUBWDzJ1FKRyYWv0DKvbZrJ2MVtVCpFUMqYKuc5FoySusqNoi-PZFAnc7wHR0dxh4QpohQPK2qxaacCgAzleqC3aESSqGcQX7JRgJneYaI-dUZVKGuzwAft2wS4ycAoNEKRTFi1ZvtfGuTDwceHH8PfUxZaSNxe2h5lQaJyTe245vQUhe5C_1AfP6Vwj4k_018eMQXP0fqE69OMdH-nt0420Wa_OeYbZeLbfmSrV-fV-V8nfkCUiaoEM4I3WoyWEuX122rpbSOwJCu3fBeN03hIKemtgVJJ2pnlMmboQcO5Zg9_s16Itode7-3_WmnJMw0KvkLya1T2w</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Beetner, D.G.</creator><creator>Haixiao Weng</creator><creator>Meilin Wu</creator><creator>Hubing, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Validation of Worst-Case and Statistical Models for an Automotive EMC Expert System</title><author>Beetner, D.G. ; Haixiao Weng ; Meilin Wu ; Hubing, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2e92f726d6e71b3f8bdd633afe07e6bf4136cc9f08ecba9e3f2bf7478cdd60f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Automobiles</topic><topic>Automotive engineering</topic><topic>Crosstalk</topic><topic>Electromagnetic compatibility</topic><topic>Electromagnetic measurements</topic><topic>Expert systems</topic><topic>Process design</topic><topic>Statistical analysis</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Beetner, D.G.</creatorcontrib><creatorcontrib>Haixiao Weng</creatorcontrib><creatorcontrib>Meilin Wu</creatorcontrib><creatorcontrib>Hubing, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beetner, D.G.</au><au>Haixiao Weng</au><au>Meilin Wu</au><au>Hubing, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validation of Worst-Case and Statistical Models for an Automotive EMC Expert System</atitle><btitle>2007 IEEE International Symposium on Electromagnetic Compatibility</btitle><stitle>ISEMC</stitle><date>2007-07</date><risdate>2007</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2158-110X</issn><eissn>2158-1118</eissn><isbn>1424413494</isbn><isbn>9781424413492</isbn><eisbn>1424413508</eisbn><eisbn>9781424413508</eisbn><abstract>Previous papers have presented algorithms for an EMC expert system used to predict potential electromagnetic compatibility problems in a vehicle early in the design process. Here, the accuracy of inductive and capacitive coupling algorithms are verified through representative measurements of crosstalk within an automobile. Worst-case estimates used by the algorithms are compared to measured values and are compared to values estimated using statistical methods. The worst-case algorithms performed well up to 10-20 MHz, but overestimated measured results by several dB in some cases and up to 10-15 dB in others. An approximate statistical variation of the current expert system algorithms also worked well and can help avoid overestimation of problems; however, worst-case estimates better ensure that problems will not be missed, especially in the absence of complete system information.</abstract><pub>IEEE</pub><doi>10.1109/ISEMC.2007.34</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-110X
ispartof 2007 IEEE International Symposium on Electromagnetic Compatibility, 2007, p.1-5
issn 2158-110X
2158-1118
language eng
recordid cdi_ieee_primary_4305614
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Automobiles
Automotive engineering
Crosstalk
Electromagnetic compatibility
Electromagnetic measurements
Expert systems
Process design
Statistical analysis
Vehicles
title Validation of Worst-Case and Statistical Models for an Automotive EMC Expert System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validation%20of%20Worst-Case%20and%20Statistical%20Models%20for%20an%20Automotive%20EMC%20Expert%20System&rft.btitle=2007%20IEEE%20International%20Symposium%20on%20Electromagnetic%20Compatibility&rft.au=Beetner,%20D.G.&rft.date=2007-07&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2158-110X&rft.eissn=2158-1118&rft.isbn=1424413494&rft.isbn_list=9781424413492&rft_id=info:doi/10.1109/ISEMC.2007.34&rft.eisbn=1424413508&rft.eisbn_list=9781424413508&rft_dat=%3Cieee_6IE%3E4305614%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-2e92f726d6e71b3f8bdd633afe07e6bf4136cc9f08ecba9e3f2bf7478cdd60f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4305614&rfr_iscdi=true