Loading…
Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators
Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as l...
Saved in:
Published in: | IEEE transactions on plasma science 1983-09, Vol.11 (3), p.200-205, Article 200 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83 |
container_end_page | 205 |
container_issue | 3 |
container_start_page | 200 |
container_title | IEEE transactions on plasma science |
container_volume | 11 |
creator | Stringfield, Ray Sincerny, Peter Wong, Sik-Lam James, Glenn Peters, Tracy Gilman, Charles |
description | Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparson with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 1014 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL). |
doi_str_mv | 10.1109/TPS.1983.4316251 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4316251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4316251</ieee_id><sourcerecordid>10_1109_TPS_1983_4316251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7eBS_5A10nTT-S47KsH7BiYddzSdOpRrqNJCmL_94UVw8evGQgzzwzzEvINYMFYyBvd9V2waTgi4yzIs3ZCZkxyWUieZmfkhmA5AkXjJ-TC-_fAViWQzojdmWHYIbRDK90G8bWoKe2o1Wv_F7RtbPe2IFuDybot4g662hlD-ho9FoTIpzM2PI09sEEdOqgQqDV2Htsj61LrbGPJFjnL8lZpyK7OtY5eblb71YPyeb5_nG13CQ6FSLEtwCFoLKSdzlorjJsseGyyAG4bnIUUmaiScv40fCmTNMMs1IzKVHwTgk-J_A9V8cTvMOu_nBmr9xnzaCeAqtjYPUUWH0MLCrFH0WboKYTg1Om_0-8-RYNIv7u-aFfn_p6iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Stringfield, Ray ; Sincerny, Peter ; Wong, Sik-Lam ; James, Glenn ; Peters, Tracy ; Gilman, Charles</creator><creatorcontrib>Stringfield, Ray ; Sincerny, Peter ; Wong, Sik-Lam ; James, Glenn ; Peters, Tracy ; Gilman, Charles</creatorcontrib><description>Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparson with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 1014 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL).</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.1983.4316251</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Coils ; Feeds ; Impedance ; Magnetic switching ; Plasma accelerators ; Power conditioning ; Switches ; Voltage ; Wire</subject><ispartof>IEEE transactions on plasma science, 1983-09, Vol.11 (3), p.200-205, Article 200</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83</citedby><cites>FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4316251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Stringfield, Ray</creatorcontrib><creatorcontrib>Sincerny, Peter</creatorcontrib><creatorcontrib>Wong, Sik-Lam</creatorcontrib><creatorcontrib>James, Glenn</creatorcontrib><creatorcontrib>Peters, Tracy</creatorcontrib><creatorcontrib>Gilman, Charles</creatorcontrib><title>Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparson with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 1014 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL).</description><subject>Acceleration</subject><subject>Coils</subject><subject>Feeds</subject><subject>Impedance</subject><subject>Magnetic switching</subject><subject>Plasma accelerators</subject><subject>Power conditioning</subject><subject>Switches</subject><subject>Voltage</subject><subject>Wire</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7eBS_5A10nTT-S47KsH7BiYddzSdOpRrqNJCmL_94UVw8evGQgzzwzzEvINYMFYyBvd9V2waTgi4yzIs3ZCZkxyWUieZmfkhmA5AkXjJ-TC-_fAViWQzojdmWHYIbRDK90G8bWoKe2o1Wv_F7RtbPe2IFuDybot4g662hlD-ho9FoTIpzM2PI09sEEdOqgQqDV2Htsj61LrbGPJFjnL8lZpyK7OtY5eblb71YPyeb5_nG13CQ6FSLEtwCFoLKSdzlorjJsseGyyAG4bnIUUmaiScv40fCmTNMMs1IzKVHwTgk-J_A9V8cTvMOu_nBmr9xnzaCeAqtjYPUUWH0MLCrFH0WboKYTg1Om_0-8-RYNIv7u-aFfn_p6iw</recordid><startdate>19830901</startdate><enddate>19830901</enddate><creator>Stringfield, Ray</creator><creator>Sincerny, Peter</creator><creator>Wong, Sik-Lam</creator><creator>James, Glenn</creator><creator>Peters, Tracy</creator><creator>Gilman, Charles</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19830901</creationdate><title>Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators</title><author>Stringfield, Ray ; Sincerny, Peter ; Wong, Sik-Lam ; James, Glenn ; Peters, Tracy ; Gilman, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Acceleration</topic><topic>Coils</topic><topic>Feeds</topic><topic>Impedance</topic><topic>Magnetic switching</topic><topic>Plasma accelerators</topic><topic>Power conditioning</topic><topic>Switches</topic><topic>Voltage</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stringfield, Ray</creatorcontrib><creatorcontrib>Sincerny, Peter</creatorcontrib><creatorcontrib>Wong, Sik-Lam</creatorcontrib><creatorcontrib>James, Glenn</creatorcontrib><creatorcontrib>Peters, Tracy</creatorcontrib><creatorcontrib>Gilman, Charles</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stringfield, Ray</au><au>Sincerny, Peter</au><au>Wong, Sik-Lam</au><au>James, Glenn</au><au>Peters, Tracy</au><au>Gilman, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>1983-09-01</date><risdate>1983</risdate><volume>11</volume><issue>3</issue><spage>200</spage><epage>205</epage><pages>200-205</pages><artnum>200</artnum><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparson with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 1014 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL).</abstract><pub>IEEE</pub><doi>10.1109/TPS.1983.4316251</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 1983-09, Vol.11 (3), p.200-205, Article 200 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_4316251 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceleration Coils Feeds Impedance Magnetic switching Plasma accelerators Power conditioning Switches Voltage Wire |
title | Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuing%20Studies%20of%20Plasma%20Erosion%20Switches%20for%20Power%20Conditioning%20on%20Multiterawatt%20Pulsed%20Power%20Accelerators&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Stringfield,%20Ray&rft.date=1983-09-01&rft.volume=11&rft.issue=3&rft.spage=200&rft.epage=205&rft.pages=200-205&rft.artnum=200&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.1983.4316251&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPS_1983_4316251%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4316251&rfr_iscdi=true |