Loading…

Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators

Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 1983-09, Vol.11 (3), p.200-205, Article 200
Main Authors: Stringfield, Ray, Sincerny, Peter, Wong, Sik-Lam, James, Glenn, Peters, Tracy, Gilman, Charles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83
cites cdi_FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83
container_end_page 205
container_issue 3
container_start_page 200
container_title IEEE transactions on plasma science
container_volume 11
creator Stringfield, Ray
Sincerny, Peter
Wong, Sik-Lam
James, Glenn
Peters, Tracy
Gilman, Charles
description Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparson with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 1014 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL).
doi_str_mv 10.1109/TPS.1983.4316251
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4316251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4316251</ieee_id><sourcerecordid>10_1109_TPS_1983_4316251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7eBS_5A10nTT-S47KsH7BiYddzSdOpRrqNJCmL_94UVw8evGQgzzwzzEvINYMFYyBvd9V2waTgi4yzIs3ZCZkxyWUieZmfkhmA5AkXjJ-TC-_fAViWQzojdmWHYIbRDK90G8bWoKe2o1Wv_F7RtbPe2IFuDybot4g662hlD-ho9FoTIpzM2PI09sEEdOqgQqDV2Htsj61LrbGPJFjnL8lZpyK7OtY5eblb71YPyeb5_nG13CQ6FSLEtwCFoLKSdzlorjJsseGyyAG4bnIUUmaiScv40fCmTNMMs1IzKVHwTgk-J_A9V8cTvMOu_nBmr9xnzaCeAqtjYPUUWH0MLCrFH0WboKYTg1Om_0-8-RYNIv7u-aFfn_p6iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Stringfield, Ray ; Sincerny, Peter ; Wong, Sik-Lam ; James, Glenn ; Peters, Tracy ; Gilman, Charles</creator><creatorcontrib>Stringfield, Ray ; Sincerny, Peter ; Wong, Sik-Lam ; James, Glenn ; Peters, Tracy ; Gilman, Charles</creatorcontrib><description>Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparson with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 1014 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL).</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.1983.4316251</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Coils ; Feeds ; Impedance ; Magnetic switching ; Plasma accelerators ; Power conditioning ; Switches ; Voltage ; Wire</subject><ispartof>IEEE transactions on plasma science, 1983-09, Vol.11 (3), p.200-205, Article 200</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83</citedby><cites>FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4316251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Stringfield, Ray</creatorcontrib><creatorcontrib>Sincerny, Peter</creatorcontrib><creatorcontrib>Wong, Sik-Lam</creatorcontrib><creatorcontrib>James, Glenn</creatorcontrib><creatorcontrib>Peters, Tracy</creatorcontrib><creatorcontrib>Gilman, Charles</creatorcontrib><title>Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparson with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 1014 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL).</description><subject>Acceleration</subject><subject>Coils</subject><subject>Feeds</subject><subject>Impedance</subject><subject>Magnetic switching</subject><subject>Plasma accelerators</subject><subject>Power conditioning</subject><subject>Switches</subject><subject>Voltage</subject><subject>Wire</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7eBS_5A10nTT-S47KsH7BiYddzSdOpRrqNJCmL_94UVw8evGQgzzwzzEvINYMFYyBvd9V2waTgi4yzIs3ZCZkxyWUieZmfkhmA5AkXjJ-TC-_fAViWQzojdmWHYIbRDK90G8bWoKe2o1Wv_F7RtbPe2IFuDybot4g662hlD-ho9FoTIpzM2PI09sEEdOqgQqDV2Htsj61LrbGPJFjnL8lZpyK7OtY5eblb71YPyeb5_nG13CQ6FSLEtwCFoLKSdzlorjJsseGyyAG4bnIUUmaiScv40fCmTNMMs1IzKVHwTgk-J_A9V8cTvMOu_nBmr9xnzaCeAqtjYPUUWH0MLCrFH0WboKYTg1Om_0-8-RYNIv7u-aFfn_p6iw</recordid><startdate>19830901</startdate><enddate>19830901</enddate><creator>Stringfield, Ray</creator><creator>Sincerny, Peter</creator><creator>Wong, Sik-Lam</creator><creator>James, Glenn</creator><creator>Peters, Tracy</creator><creator>Gilman, Charles</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19830901</creationdate><title>Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators</title><author>Stringfield, Ray ; Sincerny, Peter ; Wong, Sik-Lam ; James, Glenn ; Peters, Tracy ; Gilman, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Acceleration</topic><topic>Coils</topic><topic>Feeds</topic><topic>Impedance</topic><topic>Magnetic switching</topic><topic>Plasma accelerators</topic><topic>Power conditioning</topic><topic>Switches</topic><topic>Voltage</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stringfield, Ray</creatorcontrib><creatorcontrib>Sincerny, Peter</creatorcontrib><creatorcontrib>Wong, Sik-Lam</creatorcontrib><creatorcontrib>James, Glenn</creatorcontrib><creatorcontrib>Peters, Tracy</creatorcontrib><creatorcontrib>Gilman, Charles</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stringfield, Ray</au><au>Sincerny, Peter</au><au>Wong, Sik-Lam</au><au>James, Glenn</au><au>Peters, Tracy</au><au>Gilman, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>1983-09-01</date><risdate>1983</risdate><volume>11</volume><issue>3</issue><spage>200</spage><epage>205</epage><pages>200-205</pages><artnum>200</artnum><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparson with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 1014 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL).</abstract><pub>IEEE</pub><doi>10.1109/TPS.1983.4316251</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 1983-09, Vol.11 (3), p.200-205, Article 200
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_4316251
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
Coils
Feeds
Impedance
Magnetic switching
Plasma accelerators
Power conditioning
Switches
Voltage
Wire
title Continuing Studies of Plasma Erosion Switches for Power Conditioning on Multiterawatt Pulsed Power Accelerators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuing%20Studies%20of%20Plasma%20Erosion%20Switches%20for%20Power%20Conditioning%20on%20Multiterawatt%20Pulsed%20Power%20Accelerators&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Stringfield,%20Ray&rft.date=1983-09-01&rft.volume=11&rft.issue=3&rft.spage=200&rft.epage=205&rft.pages=200-205&rft.artnum=200&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.1983.4316251&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPS_1983_4316251%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-c260ae0a473f50c3a4edeb3965003cb5e89948b27650b3b7224e47c199e83fa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4316251&rfr_iscdi=true