Loading…
On-line Transient Stability Assessment Using Hybrid Artificial Neural Network
On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the ou...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 346 |
container_issue | |
container_start_page | 342 |
container_title | |
container_volume | |
creator | Li Chunyan Tang Biqiang Chen Xiangyi |
description | On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a hybrid neural network for TSA is proposed. The proposed hybrid neural network is composed of a Kohonen network and several radial-basis function (RBF) networks. It possesses properties of both kinds of networks. So, its ability of TSA is improved. The proposed hybrid neural network is applied for an actual power grid, the obtain results confirm the validity of the developed method. Also, a comparison between the proposed neural network and other ones is present, which indicates the efficiency of the proposed neural network. |
doi_str_mv | 10.1109/ICIEA.2007.4318427 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4318427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4318427</ieee_id><sourcerecordid>4318427</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cb6566c4ca7966db937553464eaa444d1d0700203a6f432902e9aa96fb322a013</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1Loir5Adj4BxyuH_GNl1FU2kiFLmjXlZM4yJAGZAeh_D1QumF1pDmaWQwhtxxSzsHcV2W1KFIBgKmSPFcCz0hiMOdKKAUoMT8nM8GznAlh8OKf0_zy6DQTP9VrksT4CgCSI-aSz8jjZmC9HxzdBjtE74aRPo-29r0fJ1rE6GI8_Ia76IcXuprq4FtahNF3vvG2p0_uMxwxfr2Htxty1dk-uuTEOdk9LLbliq03y6os1sxzzEbW1DrTulGNRaN1WxuJWSaVVs5apVTLW0AAAdLqTklhQDhjrdFdLYWwwOWc3P3teufc_iP4gw3T_nSO_AaVQFLh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On-line Transient Stability Assessment Using Hybrid Artificial Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Chunyan ; Tang Biqiang ; Chen Xiangyi</creator><creatorcontrib>Li Chunyan ; Tang Biqiang ; Chen Xiangyi</creatorcontrib><description>On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a hybrid neural network for TSA is proposed. The proposed hybrid neural network is composed of a Kohonen network and several radial-basis function (RBF) networks. It possesses properties of both kinds of networks. So, its ability of TSA is improved. The proposed hybrid neural network is applied for an actual power grid, the obtain results confirm the validity of the developed method. Also, a comparison between the proposed neural network and other ones is present, which indicates the efficiency of the proposed neural network.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 9781424407361</identifier><identifier>ISBN: 1424407362</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781424407378</identifier><identifier>EISBN: 1424407370</identifier><identifier>DOI: 10.1109/ICIEA.2007.4318427</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural network ; Artificial neural networks ; Industrial electronics ; On-line ; Power system ; Stability ; Transient stability assessment</subject><ispartof>2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, p.342-346</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4318427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4318427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Chunyan</creatorcontrib><creatorcontrib>Tang Biqiang</creatorcontrib><creatorcontrib>Chen Xiangyi</creatorcontrib><title>On-line Transient Stability Assessment Using Hybrid Artificial Neural Network</title><title>2007 2nd IEEE Conference on Industrial Electronics and Applications</title><addtitle>ICIEA</addtitle><description>On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a hybrid neural network for TSA is proposed. The proposed hybrid neural network is composed of a Kohonen network and several radial-basis function (RBF) networks. It possesses properties of both kinds of networks. So, its ability of TSA is improved. The proposed hybrid neural network is applied for an actual power grid, the obtain results confirm the validity of the developed method. Also, a comparison between the proposed neural network and other ones is present, which indicates the efficiency of the proposed neural network.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Industrial electronics</subject><subject>On-line</subject><subject>Power system</subject><subject>Stability</subject><subject>Transient stability assessment</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>9781424407361</isbn><isbn>1424407362</isbn><isbn>9781424407378</isbn><isbn>1424407370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtOwzAURM1Loir5Adj4BxyuH_GNl1FU2kiFLmjXlZM4yJAGZAeh_D1QumF1pDmaWQwhtxxSzsHcV2W1KFIBgKmSPFcCz0hiMOdKKAUoMT8nM8GznAlh8OKf0_zy6DQTP9VrksT4CgCSI-aSz8jjZmC9HxzdBjtE74aRPo-29r0fJ1rE6GI8_Ia76IcXuprq4FtahNF3vvG2p0_uMxwxfr2Htxty1dk-uuTEOdk9LLbliq03y6os1sxzzEbW1DrTulGNRaN1WxuJWSaVVs5apVTLW0AAAdLqTklhQDhjrdFdLYWwwOWc3P3teufc_iP4gw3T_nSO_AaVQFLh</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Li Chunyan</creator><creator>Tang Biqiang</creator><creator>Chen Xiangyi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>On-line Transient Stability Assessment Using Hybrid Artificial Neural Network</title><author>Li Chunyan ; Tang Biqiang ; Chen Xiangyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cb6566c4ca7966db937553464eaa444d1d0700203a6f432902e9aa96fb322a013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Industrial electronics</topic><topic>On-line</topic><topic>Power system</topic><topic>Stability</topic><topic>Transient stability assessment</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Chunyan</creatorcontrib><creatorcontrib>Tang Biqiang</creatorcontrib><creatorcontrib>Chen Xiangyi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Chunyan</au><au>Tang Biqiang</au><au>Chen Xiangyi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On-line Transient Stability Assessment Using Hybrid Artificial Neural Network</atitle><btitle>2007 2nd IEEE Conference on Industrial Electronics and Applications</btitle><stitle>ICIEA</stitle><date>2007-05</date><risdate>2007</risdate><spage>342</spage><epage>346</epage><pages>342-346</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>9781424407361</isbn><isbn>1424407362</isbn><eisbn>9781424407378</eisbn><eisbn>1424407370</eisbn><abstract>On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a hybrid neural network for TSA is proposed. The proposed hybrid neural network is composed of a Kohonen network and several radial-basis function (RBF) networks. It possesses properties of both kinds of networks. So, its ability of TSA is improved. The proposed hybrid neural network is applied for an actual power grid, the obtain results confirm the validity of the developed method. Also, a comparison between the proposed neural network and other ones is present, which indicates the efficiency of the proposed neural network.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2007.4318427</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-2318 |
ispartof | 2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, p.342-346 |
issn | 2156-2318 2158-2297 |
language | eng |
recordid | cdi_ieee_primary_4318427 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural network Artificial neural networks Industrial electronics On-line Power system Stability Transient stability assessment |
title | On-line Transient Stability Assessment Using Hybrid Artificial Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On-line%20Transient%20Stability%20Assessment%20Using%20Hybrid%20Artificial%20Neural%20Network&rft.btitle=2007%202nd%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications&rft.au=Li%20Chunyan&rft.date=2007-05&rft.spage=342&rft.epage=346&rft.pages=342-346&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=9781424407361&rft.isbn_list=1424407362&rft_id=info:doi/10.1109/ICIEA.2007.4318427&rft.eisbn=9781424407378&rft.eisbn_list=1424407370&rft_dat=%3Cieee_6IE%3E4318427%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-cb6566c4ca7966db937553464eaa444d1d0700203a6f432902e9aa96fb322a013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4318427&rfr_iscdi=true |