Loading…

On-line Transient Stability Assessment Using Hybrid Artificial Neural Network

On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the ou...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Chunyan, Tang Biqiang, Chen Xiangyi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 346
container_issue
container_start_page 342
container_title
container_volume
creator Li Chunyan
Tang Biqiang
Chen Xiangyi
description On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a hybrid neural network for TSA is proposed. The proposed hybrid neural network is composed of a Kohonen network and several radial-basis function (RBF) networks. It possesses properties of both kinds of networks. So, its ability of TSA is improved. The proposed hybrid neural network is applied for an actual power grid, the obtain results confirm the validity of the developed method. Also, a comparison between the proposed neural network and other ones is present, which indicates the efficiency of the proposed neural network.
doi_str_mv 10.1109/ICIEA.2007.4318427
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4318427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4318427</ieee_id><sourcerecordid>4318427</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cb6566c4ca7966db937553464eaa444d1d0700203a6f432902e9aa96fb322a013</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1Loir5Adj4BxyuH_GNl1FU2kiFLmjXlZM4yJAGZAeh_D1QumF1pDmaWQwhtxxSzsHcV2W1KFIBgKmSPFcCz0hiMOdKKAUoMT8nM8GznAlh8OKf0_zy6DQTP9VrksT4CgCSI-aSz8jjZmC9HxzdBjtE74aRPo-29r0fJ1rE6GI8_Ia76IcXuprq4FtahNF3vvG2p0_uMxwxfr2Htxty1dk-uuTEOdk9LLbliq03y6os1sxzzEbW1DrTulGNRaN1WxuJWSaVVs5apVTLW0AAAdLqTklhQDhjrdFdLYWwwOWc3P3teufc_iP4gw3T_nSO_AaVQFLh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On-line Transient Stability Assessment Using Hybrid Artificial Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Chunyan ; Tang Biqiang ; Chen Xiangyi</creator><creatorcontrib>Li Chunyan ; Tang Biqiang ; Chen Xiangyi</creatorcontrib><description>On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a hybrid neural network for TSA is proposed. The proposed hybrid neural network is composed of a Kohonen network and several radial-basis function (RBF) networks. It possesses properties of both kinds of networks. So, its ability of TSA is improved. The proposed hybrid neural network is applied for an actual power grid, the obtain results confirm the validity of the developed method. Also, a comparison between the proposed neural network and other ones is present, which indicates the efficiency of the proposed neural network.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 9781424407361</identifier><identifier>ISBN: 1424407362</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781424407378</identifier><identifier>EISBN: 1424407370</identifier><identifier>DOI: 10.1109/ICIEA.2007.4318427</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural network ; Artificial neural networks ; Industrial electronics ; On-line ; Power system ; Stability ; Transient stability assessment</subject><ispartof>2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, p.342-346</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4318427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4318427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Chunyan</creatorcontrib><creatorcontrib>Tang Biqiang</creatorcontrib><creatorcontrib>Chen Xiangyi</creatorcontrib><title>On-line Transient Stability Assessment Using Hybrid Artificial Neural Network</title><title>2007 2nd IEEE Conference on Industrial Electronics and Applications</title><addtitle>ICIEA</addtitle><description>On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a hybrid neural network for TSA is proposed. The proposed hybrid neural network is composed of a Kohonen network and several radial-basis function (RBF) networks. It possesses properties of both kinds of networks. So, its ability of TSA is improved. The proposed hybrid neural network is applied for an actual power grid, the obtain results confirm the validity of the developed method. Also, a comparison between the proposed neural network and other ones is present, which indicates the efficiency of the proposed neural network.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Industrial electronics</subject><subject>On-line</subject><subject>Power system</subject><subject>Stability</subject><subject>Transient stability assessment</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>9781424407361</isbn><isbn>1424407362</isbn><isbn>9781424407378</isbn><isbn>1424407370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtOwzAURM1Loir5Adj4BxyuH_GNl1FU2kiFLmjXlZM4yJAGZAeh_D1QumF1pDmaWQwhtxxSzsHcV2W1KFIBgKmSPFcCz0hiMOdKKAUoMT8nM8GznAlh8OKf0_zy6DQTP9VrksT4CgCSI-aSz8jjZmC9HxzdBjtE74aRPo-29r0fJ1rE6GI8_Ia76IcXuprq4FtahNF3vvG2p0_uMxwxfr2Htxty1dk-uuTEOdk9LLbliq03y6os1sxzzEbW1DrTulGNRaN1WxuJWSaVVs5apVTLW0AAAdLqTklhQDhjrdFdLYWwwOWc3P3teufc_iP4gw3T_nSO_AaVQFLh</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Li Chunyan</creator><creator>Tang Biqiang</creator><creator>Chen Xiangyi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>On-line Transient Stability Assessment Using Hybrid Artificial Neural Network</title><author>Li Chunyan ; Tang Biqiang ; Chen Xiangyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cb6566c4ca7966db937553464eaa444d1d0700203a6f432902e9aa96fb322a013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Industrial electronics</topic><topic>On-line</topic><topic>Power system</topic><topic>Stability</topic><topic>Transient stability assessment</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Chunyan</creatorcontrib><creatorcontrib>Tang Biqiang</creatorcontrib><creatorcontrib>Chen Xiangyi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Chunyan</au><au>Tang Biqiang</au><au>Chen Xiangyi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On-line Transient Stability Assessment Using Hybrid Artificial Neural Network</atitle><btitle>2007 2nd IEEE Conference on Industrial Electronics and Applications</btitle><stitle>ICIEA</stitle><date>2007-05</date><risdate>2007</risdate><spage>342</spage><epage>346</epage><pages>342-346</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>9781424407361</isbn><isbn>1424407362</isbn><eisbn>9781424407378</eisbn><eisbn>1424407370</eisbn><abstract>On-line transient stability assessment of a power system is not yet feasible due to the intensive computation involved. Artificial neural network has been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a hybrid neural network for TSA is proposed. The proposed hybrid neural network is composed of a Kohonen network and several radial-basis function (RBF) networks. It possesses properties of both kinds of networks. So, its ability of TSA is improved. The proposed hybrid neural network is applied for an actual power grid, the obtain results confirm the validity of the developed method. Also, a comparison between the proposed neural network and other ones is present, which indicates the efficiency of the proposed neural network.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2007.4318427</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-2318
ispartof 2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, p.342-346
issn 2156-2318
2158-2297
language eng
recordid cdi_ieee_primary_4318427
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural network
Artificial neural networks
Industrial electronics
On-line
Power system
Stability
Transient stability assessment
title On-line Transient Stability Assessment Using Hybrid Artificial Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On-line%20Transient%20Stability%20Assessment%20Using%20Hybrid%20Artificial%20Neural%20Network&rft.btitle=2007%202nd%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications&rft.au=Li%20Chunyan&rft.date=2007-05&rft.spage=342&rft.epage=346&rft.pages=342-346&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=9781424407361&rft.isbn_list=1424407362&rft_id=info:doi/10.1109/ICIEA.2007.4318427&rft.eisbn=9781424407378&rft.eisbn_list=1424407370&rft_dat=%3Cieee_6IE%3E4318427%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-cb6566c4ca7966db937553464eaa444d1d0700203a6f432902e9aa96fb322a013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4318427&rfr_iscdi=true