Loading…

Two-Dimensional Simulation of Single Event Indujced Bipolar Current in CMOS Structures

Single particle effects are analyzed using an advanced two-dimensional transient numerical simulator. Layered structures representative of an n-channel MOSFET drain in a p-well are modeled. TWo major results have been obtained. First, the well structure inherently provides better charge collection a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 1984-12, Vol.31 (6), p.1155-1160
Main Authors: Fu, J. S., Axness, C. L., Weaver, H. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single particle effects are analyzed using an advanced two-dimensional transient numerical simulator. Layered structures representative of an n-channel MOSFET drain in a p-well are modeled. TWo major results have been obtained. First, the well structure inherently provides better charge collection at the well-substrate compared to the drain-well junction. Ihis provides single event protection for the drain node. Second, large charge density tracks generated by very high energy particles can forward bias the drain-well junction resulting in bipolar action from the inherent parasitic n-p-n transistor of the well structure. This bipolar current is opposite to the photocurrent, suggesting a different SEU protection mechanism. However, it opens the possibility of upset of the "on" n-channel and, most critically, provides a mechanism for triggering latch-up in CMOS circuits.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.1984.4333474