Loading…

Software Fault Prediction using Language Processing

Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quali...

Full description

Saved in:
Bibliographic Details
Main Authors: Binkley, D., Feild, H., Lawrie, D., Pighin, M.
Format: Conference Proceeding
Language:eng ; jpn
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 110
container_issue
container_start_page 99
container_title
container_volume
creator Binkley, D.
Feild, H.
Lawrie, D.
Pighin, M.
description Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quality. The QALP score has been shown to correlate with human judgements of software quality. The two case studies consider the measure's application to fault prediction using two programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify relationships between defects and QALP score. Results, while complex, show that little correlation exists in the first case study, while statistically significant correlations exists in the second. In this second study the QALP score is helpful in predicting faults in modules (files) with its usefulness growing as module size increases.
doi_str_mv 10.1109/TAIC.PART.2007.10
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4344105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4344105</ieee_id><sourcerecordid>4344105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i868-9c7466de0dcdbea15512d0b96aefe7c635ad406fb95f3e54ecf93ed1dc7c4c453</originalsourceid><addsrcrecordid>eNotjMFKxDAURQMiqON8gLjpD7S-NC9JsyzF0YGCg3Y_pMlLiYytNC3i3zuid3PgHLiM3XEoOAfz0NX7pjjUr11RAuiCwwW7Aa2MLE2FeMW2Kb3DecIoVcE1E29TWL7sTNnOrqclO8zko1viNGZriuOQtXYcVjvQuUyO0q-7ZZfBnhJt_7lh3e6xa57z9uVp39RtHitV5cZpVMoTeOd7slxKXnrojbIUSDslpPUIKvRGBkESyQUjyHPvtEOHUmzY_d9tJKLj5xw_7Px9RIHIQYofFJJEIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Software Fault Prediction using Language Processing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Binkley, D. ; Feild, H. ; Lawrie, D. ; Pighin, M.</creator><creatorcontrib>Binkley, D. ; Feild, H. ; Lawrie, D. ; Pighin, M.</creatorcontrib><description>Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quality. The QALP score has been shown to correlate with human judgements of software quality. The two case studies consider the measure's application to fault prediction using two programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify relationships between defects and QALP score. Results, while complex, show that little correlation exists in the first case study, while statistically significant correlations exists in the second. In this second study the QALP score is helpful in predicting faults in modules (files) with its usefulness growing as module size increases.</description><identifier>ISBN: 0769529844</identifier><identifier>ISBN: 9780769529844</identifier><identifier>DOI: 10.1109/TAIC.PART.2007.10</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Application software ; Computer industry ; Costs ; Humans ; Information retrieval ; Natural languages ; Software engineering ; Software measurement ; Software quality ; Software testing</subject><ispartof>Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007), 2007, p.99-110</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4344105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4344105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Binkley, D.</creatorcontrib><creatorcontrib>Feild, H.</creatorcontrib><creatorcontrib>Lawrie, D.</creatorcontrib><creatorcontrib>Pighin, M.</creatorcontrib><title>Software Fault Prediction using Language Processing</title><title>Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007)</title><addtitle>TAICPART</addtitle><description>Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quality. The QALP score has been shown to correlate with human judgements of software quality. The two case studies consider the measure's application to fault prediction using two programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify relationships between defects and QALP score. Results, while complex, show that little correlation exists in the first case study, while statistically significant correlations exists in the second. In this second study the QALP score is helpful in predicting faults in modules (files) with its usefulness growing as module size increases.</description><subject>Application software</subject><subject>Computer industry</subject><subject>Costs</subject><subject>Humans</subject><subject>Information retrieval</subject><subject>Natural languages</subject><subject>Software engineering</subject><subject>Software measurement</subject><subject>Software quality</subject><subject>Software testing</subject><isbn>0769529844</isbn><isbn>9780769529844</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMFKxDAURQMiqON8gLjpD7S-NC9JsyzF0YGCg3Y_pMlLiYytNC3i3zuid3PgHLiM3XEoOAfz0NX7pjjUr11RAuiCwwW7Aa2MLE2FeMW2Kb3DecIoVcE1E29TWL7sTNnOrqclO8zko1viNGZriuOQtXYcVjvQuUyO0q-7ZZfBnhJt_7lh3e6xa57z9uVp39RtHitV5cZpVMoTeOd7slxKXnrojbIUSDslpPUIKvRGBkESyQUjyHPvtEOHUmzY_d9tJKLj5xw_7Px9RIHIQYofFJJEIw</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Binkley, D.</creator><creator>Feild, H.</creator><creator>Lawrie, D.</creator><creator>Pighin, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Software Fault Prediction using Language Processing</title><author>Binkley, D. ; Feild, H. ; Lawrie, D. ; Pighin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i868-9c7466de0dcdbea15512d0b96aefe7c635ad406fb95f3e54ecf93ed1dc7c4c453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Application software</topic><topic>Computer industry</topic><topic>Costs</topic><topic>Humans</topic><topic>Information retrieval</topic><topic>Natural languages</topic><topic>Software engineering</topic><topic>Software measurement</topic><topic>Software quality</topic><topic>Software testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Binkley, D.</creatorcontrib><creatorcontrib>Feild, H.</creatorcontrib><creatorcontrib>Lawrie, D.</creatorcontrib><creatorcontrib>Pighin, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Binkley, D.</au><au>Feild, H.</au><au>Lawrie, D.</au><au>Pighin, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Software Fault Prediction using Language Processing</atitle><btitle>Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007)</btitle><stitle>TAICPART</stitle><date>2007-09</date><risdate>2007</risdate><spage>99</spage><epage>110</epage><pages>99-110</pages><isbn>0769529844</isbn><isbn>9780769529844</isbn><abstract>Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quality. The QALP score has been shown to correlate with human judgements of software quality. The two case studies consider the measure's application to fault prediction using two programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify relationships between defects and QALP score. Results, while complex, show that little correlation exists in the first case study, while statistically significant correlations exists in the second. In this second study the QALP score is helpful in predicting faults in modules (files) with its usefulness growing as module size increases.</abstract><pub>IEEE</pub><doi>10.1109/TAIC.PART.2007.10</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769529844
ispartof Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007), 2007, p.99-110
issn
language eng ; jpn
recordid cdi_ieee_primary_4344105
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer industry
Costs
Humans
Information retrieval
Natural languages
Software engineering
Software measurement
Software quality
Software testing
title Software Fault Prediction using Language Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Software%20Fault%20Prediction%20using%20Language%20Processing&rft.btitle=Testing:%20Academic%20and%20Industrial%20Conference%20Practice%20and%20Research%20Techniques%20-%20MUTATION%20(TAICPART-MUTATION%202007)&rft.au=Binkley,%20D.&rft.date=2007-09&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.isbn=0769529844&rft.isbn_list=9780769529844&rft_id=info:doi/10.1109/TAIC.PART.2007.10&rft_dat=%3Cieee_6IE%3E4344105%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i868-9c7466de0dcdbea15512d0b96aefe7c635ad406fb95f3e54ecf93ed1dc7c4c453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4344105&rfr_iscdi=true