Loading…
Software Fault Prediction using Language Processing
Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quali...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | eng ; jpn |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 110 |
container_issue | |
container_start_page | 99 |
container_title | |
container_volume | |
creator | Binkley, D. Feild, H. Lawrie, D. Pighin, M. |
description | Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quality. The QALP score has been shown to correlate with human judgements of software quality. The two case studies consider the measure's application to fault prediction using two programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify relationships between defects and QALP score. Results, while complex, show that little correlation exists in the first case study, while statistically significant correlations exists in the second. In this second study the QALP score is helpful in predicting faults in modules (files) with its usefulness growing as module size increases. |
doi_str_mv | 10.1109/TAIC.PART.2007.10 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4344105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4344105</ieee_id><sourcerecordid>4344105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i868-9c7466de0dcdbea15512d0b96aefe7c635ad406fb95f3e54ecf93ed1dc7c4c453</originalsourceid><addsrcrecordid>eNotjMFKxDAURQMiqON8gLjpD7S-NC9JsyzF0YGCg3Y_pMlLiYytNC3i3zuid3PgHLiM3XEoOAfz0NX7pjjUr11RAuiCwwW7Aa2MLE2FeMW2Kb3DecIoVcE1E29TWL7sTNnOrqclO8zko1viNGZriuOQtXYcVjvQuUyO0q-7ZZfBnhJt_7lh3e6xa57z9uVp39RtHitV5cZpVMoTeOd7slxKXnrojbIUSDslpPUIKvRGBkESyQUjyHPvtEOHUmzY_d9tJKLj5xw_7Px9RIHIQYofFJJEIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Software Fault Prediction using Language Processing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Binkley, D. ; Feild, H. ; Lawrie, D. ; Pighin, M.</creator><creatorcontrib>Binkley, D. ; Feild, H. ; Lawrie, D. ; Pighin, M.</creatorcontrib><description>Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quality. The QALP score has been shown to correlate with human judgements of software quality. The two case studies consider the measure's application to fault prediction using two programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify relationships between defects and QALP score. Results, while complex, show that little correlation exists in the first case study, while statistically significant correlations exists in the second. In this second study the QALP score is helpful in predicting faults in modules (files) with its usefulness growing as module size increases.</description><identifier>ISBN: 0769529844</identifier><identifier>ISBN: 9780769529844</identifier><identifier>DOI: 10.1109/TAIC.PART.2007.10</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Application software ; Computer industry ; Costs ; Humans ; Information retrieval ; Natural languages ; Software engineering ; Software measurement ; Software quality ; Software testing</subject><ispartof>Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007), 2007, p.99-110</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4344105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4344105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Binkley, D.</creatorcontrib><creatorcontrib>Feild, H.</creatorcontrib><creatorcontrib>Lawrie, D.</creatorcontrib><creatorcontrib>Pighin, M.</creatorcontrib><title>Software Fault Prediction using Language Processing</title><title>Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007)</title><addtitle>TAICPART</addtitle><description>Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quality. The QALP score has been shown to correlate with human judgements of software quality. The two case studies consider the measure's application to fault prediction using two programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify relationships between defects and QALP score. Results, while complex, show that little correlation exists in the first case study, while statistically significant correlations exists in the second. In this second study the QALP score is helpful in predicting faults in modules (files) with its usefulness growing as module size increases.</description><subject>Application software</subject><subject>Computer industry</subject><subject>Costs</subject><subject>Humans</subject><subject>Information retrieval</subject><subject>Natural languages</subject><subject>Software engineering</subject><subject>Software measurement</subject><subject>Software quality</subject><subject>Software testing</subject><isbn>0769529844</isbn><isbn>9780769529844</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMFKxDAURQMiqON8gLjpD7S-NC9JsyzF0YGCg3Y_pMlLiYytNC3i3zuid3PgHLiM3XEoOAfz0NX7pjjUr11RAuiCwwW7Aa2MLE2FeMW2Kb3DecIoVcE1E29TWL7sTNnOrqclO8zko1viNGZriuOQtXYcVjvQuUyO0q-7ZZfBnhJt_7lh3e6xa57z9uVp39RtHitV5cZpVMoTeOd7slxKXnrojbIUSDslpPUIKvRGBkESyQUjyHPvtEOHUmzY_d9tJKLj5xw_7Px9RIHIQYofFJJEIw</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Binkley, D.</creator><creator>Feild, H.</creator><creator>Lawrie, D.</creator><creator>Pighin, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>Software Fault Prediction using Language Processing</title><author>Binkley, D. ; Feild, H. ; Lawrie, D. ; Pighin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i868-9c7466de0dcdbea15512d0b96aefe7c635ad406fb95f3e54ecf93ed1dc7c4c453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Application software</topic><topic>Computer industry</topic><topic>Costs</topic><topic>Humans</topic><topic>Information retrieval</topic><topic>Natural languages</topic><topic>Software engineering</topic><topic>Software measurement</topic><topic>Software quality</topic><topic>Software testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Binkley, D.</creatorcontrib><creatorcontrib>Feild, H.</creatorcontrib><creatorcontrib>Lawrie, D.</creatorcontrib><creatorcontrib>Pighin, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Binkley, D.</au><au>Feild, H.</au><au>Lawrie, D.</au><au>Pighin, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Software Fault Prediction using Language Processing</atitle><btitle>Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007)</btitle><stitle>TAICPART</stitle><date>2007-09</date><risdate>2007</risdate><spage>99</spage><epage>110</epage><pages>99-110</pages><isbn>0769529844</isbn><isbn>9780769529844</isbn><abstract>Accurate prediction of faulty modules reduces the cost of software development and evolution. Two case studies with a language-processing based fault prediction measure are presented. The measure, refereed to as a QALP score, makes use of techniques from information retrieval to judge software quality. The QALP score has been shown to correlate with human judgements of software quality. The two case studies consider the measure's application to fault prediction using two programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify relationships between defects and QALP score. Results, while complex, show that little correlation exists in the first case study, while statistically significant correlations exists in the second. In this second study the QALP score is helpful in predicting faults in modules (files) with its usefulness growing as module size increases.</abstract><pub>IEEE</pub><doi>10.1109/TAIC.PART.2007.10</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769529844 |
ispartof | Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007), 2007, p.99-110 |
issn | |
language | eng ; jpn |
recordid | cdi_ieee_primary_4344105 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Computer industry Costs Humans Information retrieval Natural languages Software engineering Software measurement Software quality Software testing |
title | Software Fault Prediction using Language Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Software%20Fault%20Prediction%20using%20Language%20Processing&rft.btitle=Testing:%20Academic%20and%20Industrial%20Conference%20Practice%20and%20Research%20Techniques%20-%20MUTATION%20(TAICPART-MUTATION%202007)&rft.au=Binkley,%20D.&rft.date=2007-09&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.isbn=0769529844&rft.isbn_list=9780769529844&rft_id=info:doi/10.1109/TAIC.PART.2007.10&rft_dat=%3Cieee_6IE%3E4344105%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i868-9c7466de0dcdbea15512d0b96aefe7c635ad406fb95f3e54ecf93ed1dc7c4c453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4344105&rfr_iscdi=true |