Loading…

In Vivo Study of Cross-Sectional Skeletal Muscle Fiber Asymmetry with Diffusion-Weighted MRI

Skeletal muscles are highly organized hierarchical structures characterized by an anisotropic arrangement of muscle fibers (myocytes) in fascicles. Due to its unique non-invasive microstructure probing capabilities, diffusion-weighted Magnetic Resonance Imaging (DW-MRI) constitutes a valuable non-in...

Full description

Saved in:
Bibliographic Details
Main Authors: Karampinos, D.C., King, K.F., Sutton, B.P., Georgiadis, J.G.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Skeletal muscles are highly organized hierarchical structures characterized by an anisotropic arrangement of muscle fibers (myocytes) in fascicles. Due to its unique non-invasive microstructure probing capabilities, diffusion-weighted Magnetic Resonance Imaging (DW-MRI) constitutes a valuable non-invasive tool in the study of such fibrous biological tissues. We have implemented a DW-MRI sequence with highly sensitive directional encoding to quantify the microarchitectural properties of human calf muscles at rest. We have specifically focused on a composite model-based analysis of diffusion tensor MRI measurements to quantify in vivo the cross-sectional asymmetry of muscle fiber geometry, which is a microstructural feature well documented in prior histological studies.
ISSN:1094-687X
1558-4615
DOI:10.1109/IEMBS.2007.4352290