Loading…
In Vivo Study of Cross-Sectional Skeletal Muscle Fiber Asymmetry with Diffusion-Weighted MRI
Skeletal muscles are highly organized hierarchical structures characterized by an anisotropic arrangement of muscle fibers (myocytes) in fascicles. Due to its unique non-invasive microstructure probing capabilities, diffusion-weighted Magnetic Resonance Imaging (DW-MRI) constitutes a valuable non-in...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Skeletal muscles are highly organized hierarchical structures characterized by an anisotropic arrangement of muscle fibers (myocytes) in fascicles. Due to its unique non-invasive microstructure probing capabilities, diffusion-weighted Magnetic Resonance Imaging (DW-MRI) constitutes a valuable non-invasive tool in the study of such fibrous biological tissues. We have implemented a DW-MRI sequence with highly sensitive directional encoding to quantify the microarchitectural properties of human calf muscles at rest. We have specifically focused on a composite model-based analysis of diffusion tensor MRI measurements to quantify in vivo the cross-sectional asymmetry of muscle fiber geometry, which is a microstructural feature well documented in prior histological studies. |
---|---|
ISSN: | 1094-687X 1558-4615 |
DOI: | 10.1109/IEMBS.2007.4352290 |