Loading…

Fully Automatic Liver Segmentation through Graph-Cut Technique

The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists...

Full description

Saved in:
Bibliographic Details
Published in:2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007-01, p.5243-5246
Main Authors: Massoptier, L., Casciaro, S.
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5246
container_issue
container_start_page 5243
container_title 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume
creator Massoptier, L.
Casciaro, S.
description The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated.
doi_str_mv 10.1109/IEMBS.2007.4353524
format article
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4353524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4353524</ieee_id><sourcerecordid>4353524</sourcerecordid><originalsourceid>FETCH-LOGICAL-i367t-32f5d8a18f8a304b3230f3191b0d52744762db473814a56429d8321ee8e087743</originalsourceid><addsrcrecordid>eNpVkMtqAkEQRTsvohh_INn0D8ykuqt6umYTMKJGMGShgeykdXqcCb4yD8G_T0Pc5G4udQ8UVVeIRwWxUpA-T0fvr_NYA9iY0KDRdCX6qWVFmggsM1yLrjKGI0qUufnHLN4GBilFCduvjujX9TcEYRow34uO4jCoFLriZdxut2c5aJvDzjXlWs7Kk6_k3G92ft-E5LCXTVEd2k0hJ5U7FtGwbeTCr4t9-dP6B3GXu23t-xfvic_xaDF8i2Yfk-lwMItKTGwToc5Nxk5xzg6BVqgR8nCAWkFmtCWyic5WZDG84ExCOs0YtfKePbC1hD3x9Le39N4vj1W5c9V5eSkGfwFBeE6O</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fully Automatic Liver Segmentation through Graph-Cut Technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Massoptier, L. ; Casciaro, S.</creator><creatorcontrib>Massoptier, L. ; Casciaro, S.</creatorcontrib><description>The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9781424407873</identifier><identifier>ISBN: 1424407877</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424407880</identifier><identifier>EISBN: 1424407885</identifier><identifier>DOI: 10.1109/IEMBS.2007.4353524</identifier><identifier>PMID: 18003190</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active contours ; automatic segmentation ; Biomedical imaging ; Cancer ; Computed tomography ; graph-cut ; Image segmentation ; liver ; Liver neoplasms ; Physiology ; Surface morphology ; Surface topography ; Surgery</subject><ispartof>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007-01, p.5243-5246</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4353524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4353524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Massoptier, L.</creatorcontrib><creatorcontrib>Casciaro, S.</creatorcontrib><title>Fully Automatic Liver Segmentation through Graph-Cut Technique</title><title>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated.</description><subject>Active contours</subject><subject>automatic segmentation</subject><subject>Biomedical imaging</subject><subject>Cancer</subject><subject>Computed tomography</subject><subject>graph-cut</subject><subject>Image segmentation</subject><subject>liver</subject><subject>Liver neoplasms</subject><subject>Physiology</subject><subject>Surface morphology</subject><subject>Surface topography</subject><subject>Surgery</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>9781424407873</isbn><isbn>1424407877</isbn><isbn>9781424407880</isbn><isbn>1424407885</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtqAkEQRTsvohh_INn0D8ykuqt6umYTMKJGMGShgeykdXqcCb4yD8G_T0Pc5G4udQ8UVVeIRwWxUpA-T0fvr_NYA9iY0KDRdCX6qWVFmggsM1yLrjKGI0qUufnHLN4GBilFCduvjujX9TcEYRow34uO4jCoFLriZdxut2c5aJvDzjXlWs7Kk6_k3G92ft-E5LCXTVEd2k0hJ5U7FtGwbeTCr4t9-dP6B3GXu23t-xfvic_xaDF8i2Yfk-lwMItKTGwToc5Nxk5xzg6BVqgR8nCAWkFmtCWyic5WZDG84ExCOs0YtfKePbC1hD3x9Le39N4vj1W5c9V5eSkGfwFBeE6O</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Massoptier, L.</creator><creator>Casciaro, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20070101</creationdate><title>Fully Automatic Liver Segmentation through Graph-Cut Technique</title><author>Massoptier, L. ; Casciaro, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i367t-32f5d8a18f8a304b3230f3191b0d52744762db473814a56429d8321ee8e087743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Active contours</topic><topic>automatic segmentation</topic><topic>Biomedical imaging</topic><topic>Cancer</topic><topic>Computed tomography</topic><topic>graph-cut</topic><topic>Image segmentation</topic><topic>liver</topic><topic>Liver neoplasms</topic><topic>Physiology</topic><topic>Surface morphology</topic><topic>Surface topography</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Massoptier, L.</creatorcontrib><creatorcontrib>Casciaro, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><jtitle>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Massoptier, L.</au><au>Casciaro, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automatic Liver Segmentation through Graph-Cut Technique</atitle><jtitle>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><date>2007-01-01</date><risdate>2007</risdate><spage>5243</spage><epage>5246</epage><pages>5243-5246</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>9781424407873</isbn><isbn>1424407877</isbn><eisbn>9781424407880</eisbn><eisbn>1424407885</eisbn><abstract>The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated.</abstract><pub>IEEE</pub><pmid>18003190</pmid><doi>10.1109/IEMBS.2007.4353524</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007-01, p.5243-5246
issn 1094-687X
1558-4615
language eng
recordid cdi_ieee_primary_4353524
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active contours
automatic segmentation
Biomedical imaging
Cancer
Computed tomography
graph-cut
Image segmentation
liver
Liver neoplasms
Physiology
Surface morphology
Surface topography
Surgery
title Fully Automatic Liver Segmentation through Graph-Cut Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automatic%20Liver%20Segmentation%20through%20Graph-Cut%20Technique&rft.jtitle=2007%2029th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Massoptier,%20L.&rft.date=2007-01-01&rft.spage=5243&rft.epage=5246&rft.pages=5243-5246&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424407873&rft.isbn_list=1424407877&rft_id=info:doi/10.1109/IEMBS.2007.4353524&rft.eisbn=9781424407880&rft.eisbn_list=1424407885&rft_dat=%3Cieee_6IE%3E4353524%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i367t-32f5d8a18f8a304b3230f3191b0d52744762db473814a56429d8321ee8e087743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/18003190&rft_ieee_id=4353524&rfr_iscdi=true