Loading…
Fully Automatic Liver Segmentation through Graph-Cut Technique
The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists...
Saved in:
Published in: | 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007-01, p.5243-5246 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5246 |
container_issue | |
container_start_page | 5243 |
container_title | 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
container_volume | |
creator | Massoptier, L. Casciaro, S. |
description | The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated. |
doi_str_mv | 10.1109/IEMBS.2007.4353524 |
format | article |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4353524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4353524</ieee_id><sourcerecordid>4353524</sourcerecordid><originalsourceid>FETCH-LOGICAL-i367t-32f5d8a18f8a304b3230f3191b0d52744762db473814a56429d8321ee8e087743</originalsourceid><addsrcrecordid>eNpVkMtqAkEQRTsvohh_INn0D8ykuqt6umYTMKJGMGShgeykdXqcCb4yD8G_T0Pc5G4udQ8UVVeIRwWxUpA-T0fvr_NYA9iY0KDRdCX6qWVFmggsM1yLrjKGI0qUufnHLN4GBilFCduvjujX9TcEYRow34uO4jCoFLriZdxut2c5aJvDzjXlWs7Kk6_k3G92ft-E5LCXTVEd2k0hJ5U7FtGwbeTCr4t9-dP6B3GXu23t-xfvic_xaDF8i2Yfk-lwMItKTGwToc5Nxk5xzg6BVqgR8nCAWkFmtCWyic5WZDG84ExCOs0YtfKePbC1hD3x9Le39N4vj1W5c9V5eSkGfwFBeE6O</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fully Automatic Liver Segmentation through Graph-Cut Technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Massoptier, L. ; Casciaro, S.</creator><creatorcontrib>Massoptier, L. ; Casciaro, S.</creatorcontrib><description>The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9781424407873</identifier><identifier>ISBN: 1424407877</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424407880</identifier><identifier>EISBN: 1424407885</identifier><identifier>DOI: 10.1109/IEMBS.2007.4353524</identifier><identifier>PMID: 18003190</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active contours ; automatic segmentation ; Biomedical imaging ; Cancer ; Computed tomography ; graph-cut ; Image segmentation ; liver ; Liver neoplasms ; Physiology ; Surface morphology ; Surface topography ; Surgery</subject><ispartof>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007-01, p.5243-5246</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4353524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4353524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Massoptier, L.</creatorcontrib><creatorcontrib>Casciaro, S.</creatorcontrib><title>Fully Automatic Liver Segmentation through Graph-Cut Technique</title><title>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated.</description><subject>Active contours</subject><subject>automatic segmentation</subject><subject>Biomedical imaging</subject><subject>Cancer</subject><subject>Computed tomography</subject><subject>graph-cut</subject><subject>Image segmentation</subject><subject>liver</subject><subject>Liver neoplasms</subject><subject>Physiology</subject><subject>Surface morphology</subject><subject>Surface topography</subject><subject>Surgery</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>9781424407873</isbn><isbn>1424407877</isbn><isbn>9781424407880</isbn><isbn>1424407885</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtqAkEQRTsvohh_INn0D8ykuqt6umYTMKJGMGShgeykdXqcCb4yD8G_T0Pc5G4udQ8UVVeIRwWxUpA-T0fvr_NYA9iY0KDRdCX6qWVFmggsM1yLrjKGI0qUufnHLN4GBilFCduvjujX9TcEYRow34uO4jCoFLriZdxut2c5aJvDzjXlWs7Kk6_k3G92ft-E5LCXTVEd2k0hJ5U7FtGwbeTCr4t9-dP6B3GXu23t-xfvic_xaDF8i2Yfk-lwMItKTGwToc5Nxk5xzg6BVqgR8nCAWkFmtCWyic5WZDG84ExCOs0YtfKePbC1hD3x9Le39N4vj1W5c9V5eSkGfwFBeE6O</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Massoptier, L.</creator><creator>Casciaro, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20070101</creationdate><title>Fully Automatic Liver Segmentation through Graph-Cut Technique</title><author>Massoptier, L. ; Casciaro, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i367t-32f5d8a18f8a304b3230f3191b0d52744762db473814a56429d8321ee8e087743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Active contours</topic><topic>automatic segmentation</topic><topic>Biomedical imaging</topic><topic>Cancer</topic><topic>Computed tomography</topic><topic>graph-cut</topic><topic>Image segmentation</topic><topic>liver</topic><topic>Liver neoplasms</topic><topic>Physiology</topic><topic>Surface morphology</topic><topic>Surface topography</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Massoptier, L.</creatorcontrib><creatorcontrib>Casciaro, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><jtitle>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Massoptier, L.</au><au>Casciaro, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automatic Liver Segmentation through Graph-Cut Technique</atitle><jtitle>2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><date>2007-01-01</date><risdate>2007</risdate><spage>5243</spage><epage>5246</epage><pages>5243-5246</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>9781424407873</isbn><isbn>1424407877</isbn><eisbn>9781424407880</eisbn><eisbn>1424407885</eisbn><abstract>The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated.</abstract><pub>IEEE</pub><pmid>18003190</pmid><doi>10.1109/IEMBS.2007.4353524</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007-01, p.5243-5246 |
issn | 1094-687X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_4353524 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Active contours automatic segmentation Biomedical imaging Cancer Computed tomography graph-cut Image segmentation liver Liver neoplasms Physiology Surface morphology Surface topography Surgery |
title | Fully Automatic Liver Segmentation through Graph-Cut Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automatic%20Liver%20Segmentation%20through%20Graph-Cut%20Technique&rft.jtitle=2007%2029th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Massoptier,%20L.&rft.date=2007-01-01&rft.spage=5243&rft.epage=5246&rft.pages=5243-5246&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424407873&rft.isbn_list=1424407877&rft_id=info:doi/10.1109/IEMBS.2007.4353524&rft.eisbn=9781424407880&rft.eisbn_list=1424407885&rft_dat=%3Cieee_6IE%3E4353524%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i367t-32f5d8a18f8a304b3230f3191b0d52744762db473814a56429d8321ee8e087743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/18003190&rft_ieee_id=4353524&rfr_iscdi=true |