Loading…

Beampattern Synthesis via a Matrix Approach for Signal Power Estimation

We present new beampattern synthesis approaches based on semidefinite relaxation (SDR) for signal power estimation. The conventional approaches use weight vectors at the array output for beampattern synthesis, which we refer to as the vector approaches (VA). Instead of this, we use weight matrices a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2007-12, Vol.55 (12), p.5643-5657
Main Authors: Jian Li, Yao Xie, Stoica, P., Xiayu Zheng, Ward, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-c0c27786531b32091335886de3cee266abfde2fa702f17fc8f450b42c67269bd3
cites cdi_FETCH-LOGICAL-c485t-c0c27786531b32091335886de3cee266abfde2fa702f17fc8f450b42c67269bd3
container_end_page 5657
container_issue 12
container_start_page 5643
container_title IEEE transactions on signal processing
container_volume 55
creator Jian Li
Yao Xie
Stoica, P.
Xiayu Zheng
Ward, J.
description We present new beampattern synthesis approaches based on semidefinite relaxation (SDR) for signal power estimation. The conventional approaches use weight vectors at the array output for beampattern synthesis, which we refer to as the vector approaches (VA). Instead of this, we use weight matrices at the array output, which leads to matrix approaches (MA). We consider several versions of MA, including a (data) adaptive MA (AMA), as well as several data-independent MA designs. For all of these MA designs, globally optimal solutions can be determined efficiently due to the convex optimization formulations obtained by SDR. Numerical examples as well as theoretical evidence are presented to show that the optimal weight matrix obtained via SDR has few dominant eigenvalues, and often only one. When the number of dominant eigenvalues of the optimal weight matrix is equal to one, MA reduces to VA, and the main advantage offered by SDR in this case is to determine the globally optimal solution efficiently. Moreover, we show that the AMA allows for strict control of main-beam shape and peak sidelobe level while retaining the capability of adaptively nulling strong interferences and jammers. Numerical examples are also used to demonstrate that better beampattern designs can be achieved via the data-independent MA than via its VA counterpart.
doi_str_mv 10.1109/TSP.2007.899343
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4359513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4359513</ieee_id><sourcerecordid>1671386552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-c0c27786531b32091335886de3cee266abfde2fa702f17fc8f450b42c67269bd3</originalsourceid><addsrcrecordid>eNp9kc1rFEEQxQdRMEbPHrw0guLB2fT3x3GNMQoRAxvFW9PTW510mJ2edM8Y89_by4QIHjxVQf2qePVe07wkeEUINkcXm_MVxVittDGMs0fNATGctJgr-bj2WLBWaPXzafOslGuMCedGHjSnH8DtRjdNkAe0uRumKyixoF_RIYe-uinH32g9jjk5f4VCymgTLwfXo_N0CxmdlCnu3BTT8Lx5Elxf4MV9PWy-fzq5OP7cnn07_XK8Pms912JqPfZUKS0FIx2j2BDGhNZyC8wDUCldF7ZAg1OYBqKC14EL3HHqpaLSdFt22Lxf7pZbGOfOjrkKyHc2uWg_xh9rm_KlnWdLCONcVfztgtcPbmYok93F4qHv3QBpLpZxXXUxWsF3_wWJVIRV3WKPvv4HvU5zrqYUqyUXnFMlKnS0QD6nUjKEB6UE231etuZl93nZJa-68eb-rCve9SG7wcfyd81Un6jSlXu1cBEAHsacCSOqm38AEtacjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864544275</pqid></control><display><type>article</type><title>Beampattern Synthesis via a Matrix Approach for Signal Power Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jian Li ; Yao Xie ; Stoica, P. ; Xiayu Zheng ; Ward, J.</creator><creatorcontrib>Jian Li ; Yao Xie ; Stoica, P. ; Xiayu Zheng ; Ward, J.</creatorcontrib><description>We present new beampattern synthesis approaches based on semidefinite relaxation (SDR) for signal power estimation. The conventional approaches use weight vectors at the array output for beampattern synthesis, which we refer to as the vector approaches (VA). Instead of this, we use weight matrices at the array output, which leads to matrix approaches (MA). We consider several versions of MA, including a (data) adaptive MA (AMA), as well as several data-independent MA designs. For all of these MA designs, globally optimal solutions can be determined efficiently due to the convex optimization formulations obtained by SDR. Numerical examples as well as theoretical evidence are presented to show that the optimal weight matrix obtained via SDR has few dominant eigenvalues, and often only one. When the number of dominant eigenvalues of the optimal weight matrix is equal to one, MA reduces to VA, and the main advantage offered by SDR in this case is to determine the globally optimal solution efficiently. Moreover, we show that the AMA allows for strict control of main-beam shape and peak sidelobe level while retaining the capability of adaptively nulling strong interferences and jammers. Numerical examples are also used to demonstrate that better beampattern designs can be achieved via the data-independent MA than via its VA counterpart.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.899343</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Beamforming ; beampattern synthesis ; convex optimization ; Design optimization ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues ; Eigenvalues and eigenfunctions ; Estimation ; Exact sciences and technology ; Finite impulse response filter ; Information technology ; Information, signal and communications theory ; Informationsteknik ; Interference ; Jamming ; main-beam shape control ; Mathematical analysis ; Mathematical models ; Nulling ; Optimization ; Shape control ; sidelobe control ; Signal and communications theory ; Signal design ; Signal processing ; Signal synthesis ; Signal, noise ; Signalbehandling ; Sonar applications ; Studies ; Synthesis ; TECHNOLOGY ; TEKNIKVETENSKAP ; Telecommunications and information theory ; Vectors (mathematics)</subject><ispartof>IEEE transactions on signal processing, 2007-12, Vol.55 (12), p.5643-5657</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-c0c27786531b32091335886de3cee266abfde2fa702f17fc8f450b42c67269bd3</citedby><cites>FETCH-LOGICAL-c485t-c0c27786531b32091335886de3cee266abfde2fa702f17fc8f450b42c67269bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4359513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19886278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-113447$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jian Li</creatorcontrib><creatorcontrib>Yao Xie</creatorcontrib><creatorcontrib>Stoica, P.</creatorcontrib><creatorcontrib>Xiayu Zheng</creatorcontrib><creatorcontrib>Ward, J.</creatorcontrib><title>Beampattern Synthesis via a Matrix Approach for Signal Power Estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We present new beampattern synthesis approaches based on semidefinite relaxation (SDR) for signal power estimation. The conventional approaches use weight vectors at the array output for beampattern synthesis, which we refer to as the vector approaches (VA). Instead of this, we use weight matrices at the array output, which leads to matrix approaches (MA). We consider several versions of MA, including a (data) adaptive MA (AMA), as well as several data-independent MA designs. For all of these MA designs, globally optimal solutions can be determined efficiently due to the convex optimization formulations obtained by SDR. Numerical examples as well as theoretical evidence are presented to show that the optimal weight matrix obtained via SDR has few dominant eigenvalues, and often only one. When the number of dominant eigenvalues of the optimal weight matrix is equal to one, MA reduces to VA, and the main advantage offered by SDR in this case is to determine the globally optimal solution efficiently. Moreover, we show that the AMA allows for strict control of main-beam shape and peak sidelobe level while retaining the capability of adaptively nulling strong interferences and jammers. Numerical examples are also used to demonstrate that better beampattern designs can be achieved via the data-independent MA than via its VA counterpart.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Beamforming</subject><subject>beampattern synthesis</subject><subject>convex optimization</subject><subject>Design optimization</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Finite impulse response filter</subject><subject>Information technology</subject><subject>Information, signal and communications theory</subject><subject>Informationsteknik</subject><subject>Interference</subject><subject>Jamming</subject><subject>main-beam shape control</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nulling</subject><subject>Optimization</subject><subject>Shape control</subject><subject>sidelobe control</subject><subject>Signal and communications theory</subject><subject>Signal design</subject><subject>Signal processing</subject><subject>Signal synthesis</subject><subject>Signal, noise</subject><subject>Signalbehandling</subject><subject>Sonar applications</subject><subject>Studies</subject><subject>Synthesis</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Telecommunications and information theory</subject><subject>Vectors (mathematics)</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rFEEQxQdRMEbPHrw0guLB2fT3x3GNMQoRAxvFW9PTW510mJ2edM8Y89_by4QIHjxVQf2qePVe07wkeEUINkcXm_MVxVittDGMs0fNATGctJgr-bj2WLBWaPXzafOslGuMCedGHjSnH8DtRjdNkAe0uRumKyixoF_RIYe-uinH32g9jjk5f4VCymgTLwfXo_N0CxmdlCnu3BTT8Lx5Elxf4MV9PWy-fzq5OP7cnn07_XK8Pms912JqPfZUKS0FIx2j2BDGhNZyC8wDUCldF7ZAg1OYBqKC14EL3HHqpaLSdFt22Lxf7pZbGOfOjrkKyHc2uWg_xh9rm_KlnWdLCONcVfztgtcPbmYok93F4qHv3QBpLpZxXXUxWsF3_wWJVIRV3WKPvv4HvU5zrqYUqyUXnFMlKnS0QD6nUjKEB6UE231etuZl93nZJa-68eb-rCve9SG7wcfyd81Un6jSlXu1cBEAHsacCSOqm38AEtacjw</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Jian Li</creator><creator>Yao Xie</creator><creator>Stoica, P.</creator><creator>Xiayu Zheng</creator><creator>Ward, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20071201</creationdate><title>Beampattern Synthesis via a Matrix Approach for Signal Power Estimation</title><author>Jian Li ; Yao Xie ; Stoica, P. ; Xiayu Zheng ; Ward, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-c0c27786531b32091335886de3cee266abfde2fa702f17fc8f450b42c67269bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Beamforming</topic><topic>beampattern synthesis</topic><topic>convex optimization</topic><topic>Design optimization</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Finite impulse response filter</topic><topic>Information technology</topic><topic>Information, signal and communications theory</topic><topic>Informationsteknik</topic><topic>Interference</topic><topic>Jamming</topic><topic>main-beam shape control</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nulling</topic><topic>Optimization</topic><topic>Shape control</topic><topic>sidelobe control</topic><topic>Signal and communications theory</topic><topic>Signal design</topic><topic>Signal processing</topic><topic>Signal synthesis</topic><topic>Signal, noise</topic><topic>Signalbehandling</topic><topic>Sonar applications</topic><topic>Studies</topic><topic>Synthesis</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Telecommunications and information theory</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian Li</creatorcontrib><creatorcontrib>Yao Xie</creatorcontrib><creatorcontrib>Stoica, P.</creatorcontrib><creatorcontrib>Xiayu Zheng</creatorcontrib><creatorcontrib>Ward, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian Li</au><au>Yao Xie</au><au>Stoica, P.</au><au>Xiayu Zheng</au><au>Ward, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beampattern Synthesis via a Matrix Approach for Signal Power Estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>55</volume><issue>12</issue><spage>5643</spage><epage>5657</epage><pages>5643-5657</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We present new beampattern synthesis approaches based on semidefinite relaxation (SDR) for signal power estimation. The conventional approaches use weight vectors at the array output for beampattern synthesis, which we refer to as the vector approaches (VA). Instead of this, we use weight matrices at the array output, which leads to matrix approaches (MA). We consider several versions of MA, including a (data) adaptive MA (AMA), as well as several data-independent MA designs. For all of these MA designs, globally optimal solutions can be determined efficiently due to the convex optimization formulations obtained by SDR. Numerical examples as well as theoretical evidence are presented to show that the optimal weight matrix obtained via SDR has few dominant eigenvalues, and often only one. When the number of dominant eigenvalues of the optimal weight matrix is equal to one, MA reduces to VA, and the main advantage offered by SDR in this case is to determine the globally optimal solution efficiently. Moreover, we show that the AMA allows for strict control of main-beam shape and peak sidelobe level while retaining the capability of adaptively nulling strong interferences and jammers. Numerical examples are also used to demonstrate that better beampattern designs can be achieved via the data-independent MA than via its VA counterpart.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.899343</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2007-12, Vol.55 (12), p.5643-5657
issn 1053-587X
1941-0476
1941-0476
language eng
recordid cdi_ieee_primary_4359513
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Arrays
Beamforming
beampattern synthesis
convex optimization
Design optimization
Detection, estimation, filtering, equalization, prediction
Eigenvalues
Eigenvalues and eigenfunctions
Estimation
Exact sciences and technology
Finite impulse response filter
Information technology
Information, signal and communications theory
Informationsteknik
Interference
Jamming
main-beam shape control
Mathematical analysis
Mathematical models
Nulling
Optimization
Shape control
sidelobe control
Signal and communications theory
Signal design
Signal processing
Signal synthesis
Signal, noise
Signalbehandling
Sonar applications
Studies
Synthesis
TECHNOLOGY
TEKNIKVETENSKAP
Telecommunications and information theory
Vectors (mathematics)
title Beampattern Synthesis via a Matrix Approach for Signal Power Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beampattern%20Synthesis%20via%20a%20Matrix%20Approach%20for%20Signal%20Power%20Estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Jian%20Li&rft.date=2007-12-01&rft.volume=55&rft.issue=12&rft.spage=5643&rft.epage=5657&rft.pages=5643-5657&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.899343&rft_dat=%3Cproquest_ieee_%3E1671386552%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-c0c27786531b32091335886de3cee266abfde2fa702f17fc8f450b42c67269bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864544275&rft_id=info:pmid/&rft_ieee_id=4359513&rfr_iscdi=true