Loading…

Practical Parameers Design for Gabor Filers with Application to Face Recognition

Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious direct...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying-Nan Zhao, Zhong Jin, Jing-Yu Yang, Chuan-Cai Liu, Xian-Quan Meng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2234
container_issue
container_start_page 2229
container_title
container_volume 4
creator Ying-Nan Zhao
Zhong Jin
Jing-Yu Yang
Chuan-Cai Liu
Xian-Quan Meng
description Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious directional characteristics in Gabor features, the filter-bank parameters design is transformed to a single filter optimization. The algorithm is simple and tractable in computing. (2) A model is presented to evaluate the Gabor features' discrimination based on the Fisher criterion. These methods are evaluated and compared on the NUST603 face database. Experimental results illustrate the availability and efficiency.
doi_str_mv 10.1109/ICMLC.2007.4370516
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4370516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370516</ieee_id><sourcerecordid>4370516</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-92b6606df2ec70d4cf8c8b411fc4e43e1349fc68798a02b7fb9c8696c70d69e13</originalsourceid><addsrcrecordid>eNo1UN1KwzAYjajgnH0BvckLtH5fkiXN5ah2DioWUfBupFkyI11b2oL49rY4b87h_HAuDiG3CAki6Ptt9lxkCQNQieAKVijPSKRVioIJAVpxOCfX_4LhBVkwlBAj5x9XJBqGLwBAJQUwviBl2Rs7BmtqWpreHJ3rB_rghnBoqG97ujHVhHmoZ_87jJ903XX11B9D29Cxpbmxjr462x6aMHs35NKbenDRiZfkPX98y57i4mWzzdZFHFCtxlizSkqQe8-cVbAX1qc2rQSit8IJ7pAL7a1MlU4NsEr5SttUajmXpZ7iJbn72w3OuV3Xh6Ppf3anQ_gvnBVR-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Practical Parameers Design for Gabor Filers with Application to Face Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Ying-Nan Zhao ; Zhong Jin ; Jing-Yu Yang ; Chuan-Cai Liu ; Xian-Quan Meng</creator><creatorcontrib>Ying-Nan Zhao ; Zhong Jin ; Jing-Yu Yang ; Chuan-Cai Liu ; Xian-Quan Meng</creatorcontrib><description>Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious directional characteristics in Gabor features, the filter-bank parameters design is transformed to a single filter optimization. The algorithm is simple and tractable in computing. (2) A model is presented to evaluate the Gabor features' discrimination based on the Fisher criterion. These methods are evaluated and compared on the NUST603 face database. Experimental results illustrate the availability and efficiency.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424409721</identifier><identifier>ISBN: 9781424409723</identifier><identifier>EISBN: 9781424409730</identifier><identifier>EISBN: 142440973X</identifier><identifier>DOI: 10.1109/ICMLC.2007.4370516</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Bandwidth ; Cybernetics ; Design engineering ; Face recognition ; Feature extraction ; Fisher criterion ; Frequency ; Gabor filter ; Gabor filters ; Image segmentation ; Machine learning ; Optimization methods</subject><ispartof>2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.4, p.2229-2234</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370516$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Nan Zhao</creatorcontrib><creatorcontrib>Zhong Jin</creatorcontrib><creatorcontrib>Jing-Yu Yang</creatorcontrib><creatorcontrib>Chuan-Cai Liu</creatorcontrib><creatorcontrib>Xian-Quan Meng</creatorcontrib><title>Practical Parameers Design for Gabor Filers with Application to Face Recognition</title><title>2007 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious directional characteristics in Gabor features, the filter-bank parameters design is transformed to a single filter optimization. The algorithm is simple and tractable in computing. (2) A model is presented to evaluate the Gabor features' discrimination based on the Fisher criterion. These methods are evaluated and compared on the NUST603 face database. Experimental results illustrate the availability and efficiency.</description><subject>Application software</subject><subject>Bandwidth</subject><subject>Cybernetics</subject><subject>Design engineering</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Fisher criterion</subject><subject>Frequency</subject><subject>Gabor filter</subject><subject>Gabor filters</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Optimization methods</subject><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><isbn>9781424409730</isbn><isbn>142440973X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UN1KwzAYjajgnH0BvckLtH5fkiXN5ah2DioWUfBupFkyI11b2oL49rY4b87h_HAuDiG3CAki6Ptt9lxkCQNQieAKVijPSKRVioIJAVpxOCfX_4LhBVkwlBAj5x9XJBqGLwBAJQUwviBl2Rs7BmtqWpreHJ3rB_rghnBoqG97ujHVhHmoZ_87jJ903XX11B9D29Cxpbmxjr462x6aMHs35NKbenDRiZfkPX98y57i4mWzzdZFHFCtxlizSkqQe8-cVbAX1qc2rQSit8IJ7pAL7a1MlU4NsEr5SttUajmXpZ7iJbn72w3OuV3Xh6Ppf3anQ_gvnBVR-g</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Ying-Nan Zhao</creator><creator>Zhong Jin</creator><creator>Jing-Yu Yang</creator><creator>Chuan-Cai Liu</creator><creator>Xian-Quan Meng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Practical Parameers Design for Gabor Filers with Application to Face Recognition</title><author>Ying-Nan Zhao ; Zhong Jin ; Jing-Yu Yang ; Chuan-Cai Liu ; Xian-Quan Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-92b6606df2ec70d4cf8c8b411fc4e43e1349fc68798a02b7fb9c8696c70d69e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Application software</topic><topic>Bandwidth</topic><topic>Cybernetics</topic><topic>Design engineering</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Fisher criterion</topic><topic>Frequency</topic><topic>Gabor filter</topic><topic>Gabor filters</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Optimization methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Nan Zhao</creatorcontrib><creatorcontrib>Zhong Jin</creatorcontrib><creatorcontrib>Jing-Yu Yang</creatorcontrib><creatorcontrib>Chuan-Cai Liu</creatorcontrib><creatorcontrib>Xian-Quan Meng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Nan Zhao</au><au>Zhong Jin</au><au>Jing-Yu Yang</au><au>Chuan-Cai Liu</au><au>Xian-Quan Meng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Practical Parameers Design for Gabor Filers with Application to Face Recognition</atitle><btitle>2007 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2007-08</date><risdate>2007</risdate><volume>4</volume><spage>2229</spage><epage>2234</epage><pages>2229-2234</pages><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><eisbn>9781424409730</eisbn><eisbn>142440973X</eisbn><abstract>Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious directional characteristics in Gabor features, the filter-bank parameters design is transformed to a single filter optimization. The algorithm is simple and tractable in computing. (2) A model is presented to evaluate the Gabor features' discrimination based on the Fisher criterion. These methods are evaluated and compared on the NUST603 face database. Experimental results illustrate the availability and efficiency.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2007.4370516</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.4, p.2229-2234
issn 2160-133X
language eng
recordid cdi_ieee_primary_4370516
source IEEE Xplore All Conference Series
subjects Application software
Bandwidth
Cybernetics
Design engineering
Face recognition
Feature extraction
Fisher criterion
Frequency
Gabor filter
Gabor filters
Image segmentation
Machine learning
Optimization methods
title Practical Parameers Design for Gabor Filers with Application to Face Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Practical%20Parameers%20Design%20for%20Gabor%20Filers%20with%20Application%20to%20Face%20Recognition&rft.btitle=2007%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Ying-Nan%20Zhao&rft.date=2007-08&rft.volume=4&rft.spage=2229&rft.epage=2234&rft.pages=2229-2234&rft.issn=2160-133X&rft.isbn=1424409721&rft.isbn_list=9781424409723&rft_id=info:doi/10.1109/ICMLC.2007.4370516&rft.eisbn=9781424409730&rft.eisbn_list=142440973X&rft_dat=%3Cieee_CHZPO%3E4370516%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-92b6606df2ec70d4cf8c8b411fc4e43e1349fc68798a02b7fb9c8696c70d69e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370516&rfr_iscdi=true