Loading…
Practical Parameers Design for Gabor Filers with Application to Face Recognition
Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious direct...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2234 |
container_issue | |
container_start_page | 2229 |
container_title | |
container_volume | 4 |
creator | Ying-Nan Zhao Zhong Jin Jing-Yu Yang Chuan-Cai Liu Xian-Quan Meng |
description | Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious directional characteristics in Gabor features, the filter-bank parameters design is transformed to a single filter optimization. The algorithm is simple and tractable in computing. (2) A model is presented to evaluate the Gabor features' discrimination based on the Fisher criterion. These methods are evaluated and compared on the NUST603 face database. Experimental results illustrate the availability and efficiency. |
doi_str_mv | 10.1109/ICMLC.2007.4370516 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4370516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370516</ieee_id><sourcerecordid>4370516</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-92b6606df2ec70d4cf8c8b411fc4e43e1349fc68798a02b7fb9c8696c70d69e13</originalsourceid><addsrcrecordid>eNo1UN1KwzAYjajgnH0BvckLtH5fkiXN5ah2DioWUfBupFkyI11b2oL49rY4b87h_HAuDiG3CAki6Ptt9lxkCQNQieAKVijPSKRVioIJAVpxOCfX_4LhBVkwlBAj5x9XJBqGLwBAJQUwviBl2Rs7BmtqWpreHJ3rB_rghnBoqG97ujHVhHmoZ_87jJ903XX11B9D29Cxpbmxjr462x6aMHs35NKbenDRiZfkPX98y57i4mWzzdZFHFCtxlizSkqQe8-cVbAX1qc2rQSit8IJ7pAL7a1MlU4NsEr5SttUajmXpZ7iJbn72w3OuV3Xh6Ppf3anQ_gvnBVR-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Practical Parameers Design for Gabor Filers with Application to Face Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Ying-Nan Zhao ; Zhong Jin ; Jing-Yu Yang ; Chuan-Cai Liu ; Xian-Quan Meng</creator><creatorcontrib>Ying-Nan Zhao ; Zhong Jin ; Jing-Yu Yang ; Chuan-Cai Liu ; Xian-Quan Meng</creatorcontrib><description>Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious directional characteristics in Gabor features, the filter-bank parameters design is transformed to a single filter optimization. The algorithm is simple and tractable in computing. (2) A model is presented to evaluate the Gabor features' discrimination based on the Fisher criterion. These methods are evaluated and compared on the NUST603 face database. Experimental results illustrate the availability and efficiency.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424409721</identifier><identifier>ISBN: 9781424409723</identifier><identifier>EISBN: 9781424409730</identifier><identifier>EISBN: 142440973X</identifier><identifier>DOI: 10.1109/ICMLC.2007.4370516</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Bandwidth ; Cybernetics ; Design engineering ; Face recognition ; Feature extraction ; Fisher criterion ; Frequency ; Gabor filter ; Gabor filters ; Image segmentation ; Machine learning ; Optimization methods</subject><ispartof>2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.4, p.2229-2234</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370516$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Nan Zhao</creatorcontrib><creatorcontrib>Zhong Jin</creatorcontrib><creatorcontrib>Jing-Yu Yang</creatorcontrib><creatorcontrib>Chuan-Cai Liu</creatorcontrib><creatorcontrib>Xian-Quan Meng</creatorcontrib><title>Practical Parameers Design for Gabor Filers with Application to Face Recognition</title><title>2007 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious directional characteristics in Gabor features, the filter-bank parameters design is transformed to a single filter optimization. The algorithm is simple and tractable in computing. (2) A model is presented to evaluate the Gabor features' discrimination based on the Fisher criterion. These methods are evaluated and compared on the NUST603 face database. Experimental results illustrate the availability and efficiency.</description><subject>Application software</subject><subject>Bandwidth</subject><subject>Cybernetics</subject><subject>Design engineering</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Fisher criterion</subject><subject>Frequency</subject><subject>Gabor filter</subject><subject>Gabor filters</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Optimization methods</subject><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><isbn>9781424409730</isbn><isbn>142440973X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UN1KwzAYjajgnH0BvckLtH5fkiXN5ah2DioWUfBupFkyI11b2oL49rY4b87h_HAuDiG3CAki6Ptt9lxkCQNQieAKVijPSKRVioIJAVpxOCfX_4LhBVkwlBAj5x9XJBqGLwBAJQUwviBl2Rs7BmtqWpreHJ3rB_rghnBoqG97ujHVhHmoZ_87jJ903XX11B9D29Cxpbmxjr462x6aMHs35NKbenDRiZfkPX98y57i4mWzzdZFHFCtxlizSkqQe8-cVbAX1qc2rQSit8IJ7pAL7a1MlU4NsEr5SttUajmXpZ7iJbn72w3OuV3Xh6Ppf3anQ_gvnBVR-g</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Ying-Nan Zhao</creator><creator>Zhong Jin</creator><creator>Jing-Yu Yang</creator><creator>Chuan-Cai Liu</creator><creator>Xian-Quan Meng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>Practical Parameers Design for Gabor Filers with Application to Face Recognition</title><author>Ying-Nan Zhao ; Zhong Jin ; Jing-Yu Yang ; Chuan-Cai Liu ; Xian-Quan Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-92b6606df2ec70d4cf8c8b411fc4e43e1349fc68798a02b7fb9c8696c70d69e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Application software</topic><topic>Bandwidth</topic><topic>Cybernetics</topic><topic>Design engineering</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Fisher criterion</topic><topic>Frequency</topic><topic>Gabor filter</topic><topic>Gabor filters</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Optimization methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Nan Zhao</creatorcontrib><creatorcontrib>Zhong Jin</creatorcontrib><creatorcontrib>Jing-Yu Yang</creatorcontrib><creatorcontrib>Chuan-Cai Liu</creatorcontrib><creatorcontrib>Xian-Quan Meng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Nan Zhao</au><au>Zhong Jin</au><au>Jing-Yu Yang</au><au>Chuan-Cai Liu</au><au>Xian-Quan Meng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Practical Parameers Design for Gabor Filers with Application to Face Recognition</atitle><btitle>2007 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2007-08</date><risdate>2007</risdate><volume>4</volume><spage>2229</spage><epage>2234</epage><pages>2229-2234</pages><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><eisbn>9781424409730</eisbn><eisbn>142440973X</eisbn><abstract>Feature extraction works using Gabor filters have shown that recognition performance is heavily affected by the filters parameters design. This paper investigates methods in this domain and proposes a practical one. The main contribution of this paper includes: (1) On the basis of the obvious directional characteristics in Gabor features, the filter-bank parameters design is transformed to a single filter optimization. The algorithm is simple and tractable in computing. (2) A model is presented to evaluate the Gabor features' discrimination based on the Fisher criterion. These methods are evaluated and compared on the NUST603 face database. Experimental results illustrate the availability and efficiency.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2007.4370516</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-133X |
ispartof | 2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.4, p.2229-2234 |
issn | 2160-133X |
language | eng |
recordid | cdi_ieee_primary_4370516 |
source | IEEE Xplore All Conference Series |
subjects | Application software Bandwidth Cybernetics Design engineering Face recognition Feature extraction Fisher criterion Frequency Gabor filter Gabor filters Image segmentation Machine learning Optimization methods |
title | Practical Parameers Design for Gabor Filers with Application to Face Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Practical%20Parameers%20Design%20for%20Gabor%20Filers%20with%20Application%20to%20Face%20Recognition&rft.btitle=2007%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Ying-Nan%20Zhao&rft.date=2007-08&rft.volume=4&rft.spage=2229&rft.epage=2234&rft.pages=2229-2234&rft.issn=2160-133X&rft.isbn=1424409721&rft.isbn_list=9781424409723&rft_id=info:doi/10.1109/ICMLC.2007.4370516&rft.eisbn=9781424409730&rft.eisbn_list=142440973X&rft_dat=%3Cieee_CHZPO%3E4370516%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-92b6606df2ec70d4cf8c8b411fc4e43e1349fc68798a02b7fb9c8696c70d69e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370516&rfr_iscdi=true |