Loading…

A Peer-to-Peer Information Retrieval System Based on Semantic Similarity Model

Peer-to-peer (P2P) networks have received more and more attention from researchers. P2P seems to be an interesting architectural paradigm for realizing large-scale information retrieval systems for its scalability, failure resilience and increased autonomy of nodes. This paper provides a novel peer-...

Full description

Saved in:
Bibliographic Details
Main Authors: Kun-Peng Zhu, Zhi-Ming Xu, Xiao-Long Wang, Yu-Ming Zhao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4043
container_issue
container_start_page 4038
container_title
container_volume 7
creator Kun-Peng Zhu
Zhi-Ming Xu
Xiao-Long Wang
Yu-Ming Zhao
description Peer-to-peer (P2P) networks have received more and more attention from researchers. P2P seems to be an interesting architectural paradigm for realizing large-scale information retrieval systems for its scalability, failure resilience and increased autonomy of nodes. This paper provides a novel peer-to-peer networks system that is based on information retrieval in a large-scale collection of texts, and a semantic similarity model is developed and applied in it, which improves the performance of the system. Some natural language processing technologies are adopted to increase the accuracy of the system. Several useful tools are incorporates as external auxiliary resources. In addition, feedback knowledge such as query information from peers is also widely used to direct querying messages flooding based on a semantic routing mechanism in this system. Finally, an experimental study is used to verify the advantages of system, and the results are comparatively satisfying.
doi_str_mv 10.1109/ICMLC.2007.4370852
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4370852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4370852</ieee_id><sourcerecordid>4370852</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4d3145f67f1f244b73c1fe172767b63ab7b5c00b483751fda263138aca3951f13</originalsourceid><addsrcrecordid>eNo1kN1Kw0AQhVdUsNa-gN7sC6TO7GwyyWUN_hRaFavgXdkks7CSNJIsQt_einr18XHgcDhKXSLMEaG4XpbrVTk3ADy3xJCn5kjNCs7RGmuhYIJjdf4vBk_UxGAGCRK9n6nZOH4AAHJmwdBEPS70s8iQxD75oV7ufD90LoZ-p18kDkG-XKs3-zFKp2_cKI0-JBvp3C6GWm9CF1o3hLjX676R9kKdeteOMvvjVL3d3b6WD8nq6X5ZLlZJQE5jYhtCm_qMPfrDzoqpRi_IhjOuMnIVV2kNUNmcOEXfOJMRUu5qR8XBkabq6rc3iMj2cwidG_bbvzvoG3mLUE8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Peer-to-Peer Information Retrieval System Based on Semantic Similarity Model</title><source>IEEE Xplore All Conference Series</source><creator>Kun-Peng Zhu ; Zhi-Ming Xu ; Xiao-Long Wang ; Yu-Ming Zhao</creator><creatorcontrib>Kun-Peng Zhu ; Zhi-Ming Xu ; Xiao-Long Wang ; Yu-Ming Zhao</creatorcontrib><description>Peer-to-peer (P2P) networks have received more and more attention from researchers. P2P seems to be an interesting architectural paradigm for realizing large-scale information retrieval systems for its scalability, failure resilience and increased autonomy of nodes. This paper provides a novel peer-to-peer networks system that is based on information retrieval in a large-scale collection of texts, and a semantic similarity model is developed and applied in it, which improves the performance of the system. Some natural language processing technologies are adopted to increase the accuracy of the system. Several useful tools are incorporates as external auxiliary resources. In addition, feedback knowledge such as query information from peers is also widely used to direct querying messages flooding based on a semantic routing mechanism in this system. Finally, an experimental study is used to verify the advantages of system, and the results are comparatively satisfying.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424409721</identifier><identifier>ISBN: 9781424409723</identifier><identifier>EISBN: 9781424409730</identifier><identifier>EISBN: 142440973X</identifier><identifier>DOI: 10.1109/ICMLC.2007.4370852</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content based retrieval ; Cybernetics ; Indexing ; Information retrieval ; Intelligent networks ; Large-scale systems ; Learning systems ; Machine learning ; Natural language processing ; Peer to peer computing ; Peer-to-Peer ; Semantic similarity</subject><ispartof>2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.7, p.4038-4043</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4370852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4370852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kun-Peng Zhu</creatorcontrib><creatorcontrib>Zhi-Ming Xu</creatorcontrib><creatorcontrib>Xiao-Long Wang</creatorcontrib><creatorcontrib>Yu-Ming Zhao</creatorcontrib><title>A Peer-to-Peer Information Retrieval System Based on Semantic Similarity Model</title><title>2007 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Peer-to-peer (P2P) networks have received more and more attention from researchers. P2P seems to be an interesting architectural paradigm for realizing large-scale information retrieval systems for its scalability, failure resilience and increased autonomy of nodes. This paper provides a novel peer-to-peer networks system that is based on information retrieval in a large-scale collection of texts, and a semantic similarity model is developed and applied in it, which improves the performance of the system. Some natural language processing technologies are adopted to increase the accuracy of the system. Several useful tools are incorporates as external auxiliary resources. In addition, feedback knowledge such as query information from peers is also widely used to direct querying messages flooding based on a semantic routing mechanism in this system. Finally, an experimental study is used to verify the advantages of system, and the results are comparatively satisfying.</description><subject>Content based retrieval</subject><subject>Cybernetics</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Intelligent networks</subject><subject>Large-scale systems</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Peer to peer computing</subject><subject>Peer-to-Peer</subject><subject>Semantic similarity</subject><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><isbn>9781424409730</isbn><isbn>142440973X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AQhVdUsNa-gN7sC6TO7GwyyWUN_hRaFavgXdkks7CSNJIsQt_einr18XHgcDhKXSLMEaG4XpbrVTk3ADy3xJCn5kjNCs7RGmuhYIJjdf4vBk_UxGAGCRK9n6nZOH4AAHJmwdBEPS70s8iQxD75oV7ufD90LoZ-p18kDkG-XKs3-zFKp2_cKI0-JBvp3C6GWm9CF1o3hLjX676R9kKdeteOMvvjVL3d3b6WD8nq6X5ZLlZJQE5jYhtCm_qMPfrDzoqpRi_IhjOuMnIVV2kNUNmcOEXfOJMRUu5qR8XBkabq6rc3iMj2cwidG_bbvzvoG3mLUE8</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Kun-Peng Zhu</creator><creator>Zhi-Ming Xu</creator><creator>Xiao-Long Wang</creator><creator>Yu-Ming Zhao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200708</creationdate><title>A Peer-to-Peer Information Retrieval System Based on Semantic Similarity Model</title><author>Kun-Peng Zhu ; Zhi-Ming Xu ; Xiao-Long Wang ; Yu-Ming Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4d3145f67f1f244b73c1fe172767b63ab7b5c00b483751fda263138aca3951f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Content based retrieval</topic><topic>Cybernetics</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Intelligent networks</topic><topic>Large-scale systems</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Peer to peer computing</topic><topic>Peer-to-Peer</topic><topic>Semantic similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Kun-Peng Zhu</creatorcontrib><creatorcontrib>Zhi-Ming Xu</creatorcontrib><creatorcontrib>Xiao-Long Wang</creatorcontrib><creatorcontrib>Yu-Ming Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kun-Peng Zhu</au><au>Zhi-Ming Xu</au><au>Xiao-Long Wang</au><au>Yu-Ming Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Peer-to-Peer Information Retrieval System Based on Semantic Similarity Model</atitle><btitle>2007 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2007-08</date><risdate>2007</risdate><volume>7</volume><spage>4038</spage><epage>4043</epage><pages>4038-4043</pages><issn>2160-133X</issn><isbn>1424409721</isbn><isbn>9781424409723</isbn><eisbn>9781424409730</eisbn><eisbn>142440973X</eisbn><abstract>Peer-to-peer (P2P) networks have received more and more attention from researchers. P2P seems to be an interesting architectural paradigm for realizing large-scale information retrieval systems for its scalability, failure resilience and increased autonomy of nodes. This paper provides a novel peer-to-peer networks system that is based on information retrieval in a large-scale collection of texts, and a semantic similarity model is developed and applied in it, which improves the performance of the system. Some natural language processing technologies are adopted to increase the accuracy of the system. Several useful tools are incorporates as external auxiliary resources. In addition, feedback knowledge such as query information from peers is also widely used to direct querying messages flooding based on a semantic routing mechanism in this system. Finally, an experimental study is used to verify the advantages of system, and the results are comparatively satisfying.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2007.4370852</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2007 International Conference on Machine Learning and Cybernetics, 2007, Vol.7, p.4038-4043
issn 2160-133X
language eng
recordid cdi_ieee_primary_4370852
source IEEE Xplore All Conference Series
subjects Content based retrieval
Cybernetics
Indexing
Information retrieval
Intelligent networks
Large-scale systems
Learning systems
Machine learning
Natural language processing
Peer to peer computing
Peer-to-Peer
Semantic similarity
title A Peer-to-Peer Information Retrieval System Based on Semantic Similarity Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Peer-to-Peer%20Information%20Retrieval%20System%20Based%20on%20Semantic%20Similarity%20Model&rft.btitle=2007%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Kun-Peng%20Zhu&rft.date=2007-08&rft.volume=7&rft.spage=4038&rft.epage=4043&rft.pages=4038-4043&rft.issn=2160-133X&rft.isbn=1424409721&rft.isbn_list=9781424409723&rft_id=info:doi/10.1109/ICMLC.2007.4370852&rft.eisbn=9781424409730&rft.eisbn_list=142440973X&rft_dat=%3Cieee_CHZPO%3E4370852%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4d3145f67f1f244b73c1fe172767b63ab7b5c00b483751fda263138aca3951f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4370852&rfr_iscdi=true