Loading…

Assessing flexible models and rule extraction from censored survival data

The evaluation of generic non-linear models for censored data needs to address the two complementary requirements in the software development life-cycle, of validation and verification. The former involves making a rigorous assessment of predictive accuracy in prognostic modelling and the latter is...

Full description

Saved in:
Bibliographic Details
Main Authors: Lisboa, P.J.G., Biganzoli, E.M., Taktak, A.F., Etchells, T.A., Jarman, I.H., Aung, M.S.H., Ambrogi, F.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1668
container_issue
container_start_page 1663
container_title
container_volume
creator Lisboa, P.J.G.
Biganzoli, E.M.
Taktak, A.F.
Etchells, T.A.
Jarman, I.H.
Aung, M.S.H.
Ambrogi, F.
description The evaluation of generic non-linear models for censored data needs to address the two complementary requirements in the software development life-cycle, of validation and verification. The former involves making a rigorous assessment of predictive accuracy in prognostic modelling and the latter is interpreted in this paper as comprising two different stages, namely model selection and rule-based interpretation of the composition of prognostic risk groups. With reference to prognostic performance is survival modelling the well-known ROC framework has recently been extended to a threshold independent, time-dependent performance index to quantify the predictive accuracy of censored data models, termed the C' index, which is briefly described. The rule-based framework for direct validation of risk group allocation against expert domain knowledge, uses low-order Boolean rules to approximate the response surfaces generated by analytical inference models. In the case of censored data, this approach serves to characterise the allocation of patients into risk groups generated by a risk staging index. Furthermore, the low-order rules define low-dimensional sub-spaces where individual data points can be directly visualised in relation to the decision boundaries for their risk group. Taken together, the quantitative performance index, Boolean explanatory rules and direct visualisation of the data, define a consistent and transparent validation framework based on triangulation of information. This information can be included in decision support systems.
doi_str_mv 10.1109/IJCNN.2007.4371207
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4371207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4371207</ieee_id><sourcerecordid>4371207</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d2929ed753e25768b991373c7c012fe227256435d01251574f1c9cdbceb693403</originalsourceid><addsrcrecordid>eNo1kMtKw0AYhccb2Na-gG7mBRLnmum_LMFLpNSNgrsymfkjI2kiM2mpb2_AuDp8fHA4HEJuOcs5Z3BfvZTbbS4YM7mShgtmzsicK6EUlyv2cU5mghc8U4qZC7IEs5qcAbj8dxLkNZmn9MWYkAByRqp1SphS6D5p0-Ip1C3Sfe-xTdR2nsbDyHgaonVD6DvaxH5PHXapj-hpOsRjONqWejvYG3LV2DbhcsoFeX98eCufs83rU1WuN1ngRg-ZFyAAvdEShTbFqgYYN0pnHOOiQSGM0IWS2o-ouTaq4Q6crx3WBUjF5ILc_fUGRNx9x7C38Wc3XSJ_AQyzUJQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing flexible models and rule extraction from censored survival data</title><source>IEEE Xplore All Conference Series</source><creator>Lisboa, P.J.G. ; Biganzoli, E.M. ; Taktak, A.F. ; Etchells, T.A. ; Jarman, I.H. ; Aung, M.S.H. ; Ambrogi, F.</creator><creatorcontrib>Lisboa, P.J.G. ; Biganzoli, E.M. ; Taktak, A.F. ; Etchells, T.A. ; Jarman, I.H. ; Aung, M.S.H. ; Ambrogi, F.</creatorcontrib><description>The evaluation of generic non-linear models for censored data needs to address the two complementary requirements in the software development life-cycle, of validation and verification. The former involves making a rigorous assessment of predictive accuracy in prognostic modelling and the latter is interpreted in this paper as comprising two different stages, namely model selection and rule-based interpretation of the composition of prognostic risk groups. With reference to prognostic performance is survival modelling the well-known ROC framework has recently been extended to a threshold independent, time-dependent performance index to quantify the predictive accuracy of censored data models, termed the C' index, which is briefly described. The rule-based framework for direct validation of risk group allocation against expert domain knowledge, uses low-order Boolean rules to approximate the response surfaces generated by analytical inference models. In the case of censored data, this approach serves to characterise the allocation of patients into risk groups generated by a risk staging index. Furthermore, the low-order rules define low-dimensional sub-spaces where individual data points can be directly visualised in relation to the decision boundaries for their risk group. Taken together, the quantitative performance index, Boolean explanatory rules and direct visualisation of the data, define a consistent and transparent validation framework based on triangulation of information. This information can be included in decision support systems.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424413799</identifier><identifier>ISBN: 1424413796</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 142441380X</identifier><identifier>EISBN: 9781424413805</identifier><identifier>DOI: 10.1109/IJCNN.2007.4371207</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Analytical models ; Data mining ; Data models ; Data visualization ; Performance analysis ; Predictive models ; Programming ; Response surface methodology ; Risk analysis</subject><ispartof>2007 International Joint Conference on Neural Networks, 2007, p.1663-1668</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4371207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4371207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lisboa, P.J.G.</creatorcontrib><creatorcontrib>Biganzoli, E.M.</creatorcontrib><creatorcontrib>Taktak, A.F.</creatorcontrib><creatorcontrib>Etchells, T.A.</creatorcontrib><creatorcontrib>Jarman, I.H.</creatorcontrib><creatorcontrib>Aung, M.S.H.</creatorcontrib><creatorcontrib>Ambrogi, F.</creatorcontrib><title>Assessing flexible models and rule extraction from censored survival data</title><title>2007 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>The evaluation of generic non-linear models for censored data needs to address the two complementary requirements in the software development life-cycle, of validation and verification. The former involves making a rigorous assessment of predictive accuracy in prognostic modelling and the latter is interpreted in this paper as comprising two different stages, namely model selection and rule-based interpretation of the composition of prognostic risk groups. With reference to prognostic performance is survival modelling the well-known ROC framework has recently been extended to a threshold independent, time-dependent performance index to quantify the predictive accuracy of censored data models, termed the C' index, which is briefly described. The rule-based framework for direct validation of risk group allocation against expert domain knowledge, uses low-order Boolean rules to approximate the response surfaces generated by analytical inference models. In the case of censored data, this approach serves to characterise the allocation of patients into risk groups generated by a risk staging index. Furthermore, the low-order rules define low-dimensional sub-spaces where individual data points can be directly visualised in relation to the decision boundaries for their risk group. Taken together, the quantitative performance index, Boolean explanatory rules and direct visualisation of the data, define a consistent and transparent validation framework based on triangulation of information. This information can be included in decision support systems.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Data mining</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Performance analysis</subject><subject>Predictive models</subject><subject>Programming</subject><subject>Response surface methodology</subject><subject>Risk analysis</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424413799</isbn><isbn>1424413796</isbn><isbn>142441380X</isbn><isbn>9781424413805</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKw0AYhccb2Na-gG7mBRLnmum_LMFLpNSNgrsymfkjI2kiM2mpb2_AuDp8fHA4HEJuOcs5Z3BfvZTbbS4YM7mShgtmzsicK6EUlyv2cU5mghc8U4qZC7IEs5qcAbj8dxLkNZmn9MWYkAByRqp1SphS6D5p0-Ip1C3Sfe-xTdR2nsbDyHgaonVD6DvaxH5PHXapj-hpOsRjONqWejvYG3LV2DbhcsoFeX98eCufs83rU1WuN1ngRg-ZFyAAvdEShTbFqgYYN0pnHOOiQSGM0IWS2o-ouTaq4Q6crx3WBUjF5ILc_fUGRNx9x7C38Wc3XSJ_AQyzUJQ</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Lisboa, P.J.G.</creator><creator>Biganzoli, E.M.</creator><creator>Taktak, A.F.</creator><creator>Etchells, T.A.</creator><creator>Jarman, I.H.</creator><creator>Aung, M.S.H.</creator><creator>Ambrogi, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200708</creationdate><title>Assessing flexible models and rule extraction from censored survival data</title><author>Lisboa, P.J.G. ; Biganzoli, E.M. ; Taktak, A.F. ; Etchells, T.A. ; Jarman, I.H. ; Aung, M.S.H. ; Ambrogi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d2929ed753e25768b991373c7c012fe227256435d01251574f1c9cdbceb693403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Data mining</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Performance analysis</topic><topic>Predictive models</topic><topic>Programming</topic><topic>Response surface methodology</topic><topic>Risk analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lisboa, P.J.G.</creatorcontrib><creatorcontrib>Biganzoli, E.M.</creatorcontrib><creatorcontrib>Taktak, A.F.</creatorcontrib><creatorcontrib>Etchells, T.A.</creatorcontrib><creatorcontrib>Jarman, I.H.</creatorcontrib><creatorcontrib>Aung, M.S.H.</creatorcontrib><creatorcontrib>Ambrogi, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lisboa, P.J.G.</au><au>Biganzoli, E.M.</au><au>Taktak, A.F.</au><au>Etchells, T.A.</au><au>Jarman, I.H.</au><au>Aung, M.S.H.</au><au>Ambrogi, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing flexible models and rule extraction from censored survival data</atitle><btitle>2007 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2007-08</date><risdate>2007</risdate><spage>1663</spage><epage>1668</epage><pages>1663-1668</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424413799</isbn><isbn>1424413796</isbn><eisbn>142441380X</eisbn><eisbn>9781424413805</eisbn><abstract>The evaluation of generic non-linear models for censored data needs to address the two complementary requirements in the software development life-cycle, of validation and verification. The former involves making a rigorous assessment of predictive accuracy in prognostic modelling and the latter is interpreted in this paper as comprising two different stages, namely model selection and rule-based interpretation of the composition of prognostic risk groups. With reference to prognostic performance is survival modelling the well-known ROC framework has recently been extended to a threshold independent, time-dependent performance index to quantify the predictive accuracy of censored data models, termed the C' index, which is briefly described. The rule-based framework for direct validation of risk group allocation against expert domain knowledge, uses low-order Boolean rules to approximate the response surfaces generated by analytical inference models. In the case of censored data, this approach serves to characterise the allocation of patients into risk groups generated by a risk staging index. Furthermore, the low-order rules define low-dimensional sub-spaces where individual data points can be directly visualised in relation to the decision boundaries for their risk group. Taken together, the quantitative performance index, Boolean explanatory rules and direct visualisation of the data, define a consistent and transparent validation framework based on triangulation of information. This information can be included in decision support systems.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2007.4371207</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2007 International Joint Conference on Neural Networks, 2007, p.1663-1668
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_4371207
source IEEE Xplore All Conference Series
subjects Accuracy
Analytical models
Data mining
Data models
Data visualization
Performance analysis
Predictive models
Programming
Response surface methodology
Risk analysis
title Assessing flexible models and rule extraction from censored survival data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20flexible%20models%20and%20rule%20extraction%20from%20censored%20survival%20data&rft.btitle=2007%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Lisboa,%20P.J.G.&rft.date=2007-08&rft.spage=1663&rft.epage=1668&rft.pages=1663-1668&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424413799&rft.isbn_list=1424413796&rft_id=info:doi/10.1109/IJCNN.2007.4371207&rft.eisbn=142441380X&rft.eisbn_list=9781424413805&rft_dat=%3Cieee_CHZPO%3E4371207%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d2929ed753e25768b991373c7c012fe227256435d01251574f1c9cdbceb693403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4371207&rfr_iscdi=true