Loading…
Amplitude and Spike Timing Dependent Plasticity
Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven to...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1806 |
container_issue | |
container_start_page | 1802 |
container_title | |
container_volume | |
creator | Dockendorf, K.P. DeMarse, T.B. |
description | Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven toward stable values and unimodal distributions. The affects of input correlation on synaptic weight are shown using simulated cortical neurons. It was found that pre-and post-synaptic spike trains effect the mean, variance, and skew of the synaptic weight distributions using amplitude and spike-timing dependent plasticity. In addition, multiplicative synaptic modification noise was found to increase the variance of the weight distribution and induce positive skew. |
doi_str_mv | 10.1109/IJCNN.2007.4371231 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4371231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4371231</ieee_id><sourcerecordid>4371231</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ec1e3ecbc7b586d8d3eee6f20a9aad9cb461b79e4606a0f2ce16a68f07188e13</originalsourceid><addsrcrecordid>eNo1j8tOwzAQRc1Loi39AdjkB5LO2K4fyyoU2qoqSGTBrnLsCTIkUdSERf8eJMLqLI7OlS5j9wgZItjFdpcfDhkH0JkUGrnACzZFyaVEYeD9kk04KkylBH3F5lab0Wlrr_-dsOKWTfv-E4ALa8WELVZNV8fhO1Di2pC8dfGLkiI2sf1IHqmjNlA7JK-164fo43C-YzeVq3uaj5yx4mld5Jt0__K8zVf7NKJeDil5JEG-9LpcGhVMEESkKg7OOhesL6XCUluSCpSDintC5ZSpQKMxhGLGHv5m42937E6xcafzcfwtfgDHe0f8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Amplitude and Spike Timing Dependent Plasticity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dockendorf, K.P. ; DeMarse, T.B.</creator><creatorcontrib>Dockendorf, K.P. ; DeMarse, T.B.</creatorcontrib><description>Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven toward stable values and unimodal distributions. The affects of input correlation on synaptic weight are shown using simulated cortical neurons. It was found that pre-and post-synaptic spike trains effect the mean, variance, and skew of the synaptic weight distributions using amplitude and spike-timing dependent plasticity. In addition, multiplicative synaptic modification noise was found to increase the variance of the weight distribution and induce positive skew.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424413799</identifier><identifier>ISBN: 1424413796</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 142441380X</identifier><identifier>EISBN: 9781424413805</identifier><identifier>DOI: 10.1109/IJCNN.2007.4371231</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Biology computing ; Bismuth ; Computational modeling ; Computer networks ; In vitro ; Negative feedback ; Neural networks ; Neurons ; Timing</subject><ispartof>2007 International Joint Conference on Neural Networks, 2007, p.1802-1806</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4371231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4371231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dockendorf, K.P.</creatorcontrib><creatorcontrib>DeMarse, T.B.</creatorcontrib><title>Amplitude and Spike Timing Dependent Plasticity</title><title>2007 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven toward stable values and unimodal distributions. The affects of input correlation on synaptic weight are shown using simulated cortical neurons. It was found that pre-and post-synaptic spike trains effect the mean, variance, and skew of the synaptic weight distributions using amplitude and spike-timing dependent plasticity. In addition, multiplicative synaptic modification noise was found to increase the variance of the weight distribution and induce positive skew.</description><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>Bismuth</subject><subject>Computational modeling</subject><subject>Computer networks</subject><subject>In vitro</subject><subject>Negative feedback</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Timing</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424413799</isbn><isbn>1424413796</isbn><isbn>142441380X</isbn><isbn>9781424413805</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tOwzAQRc1Loi39AdjkB5LO2K4fyyoU2qoqSGTBrnLsCTIkUdSERf8eJMLqLI7OlS5j9wgZItjFdpcfDhkH0JkUGrnACzZFyaVEYeD9kk04KkylBH3F5lab0Wlrr_-dsOKWTfv-E4ALa8WELVZNV8fhO1Di2pC8dfGLkiI2sf1IHqmjNlA7JK-164fo43C-YzeVq3uaj5yx4mld5Jt0__K8zVf7NKJeDil5JEG-9LpcGhVMEESkKg7OOhesL6XCUluSCpSDintC5ZSpQKMxhGLGHv5m42937E6xcafzcfwtfgDHe0f8</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Dockendorf, K.P.</creator><creator>DeMarse, T.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200708</creationdate><title>Amplitude and Spike Timing Dependent Plasticity</title><author>Dockendorf, K.P. ; DeMarse, T.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ec1e3ecbc7b586d8d3eee6f20a9aad9cb461b79e4606a0f2ce16a68f07188e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>Bismuth</topic><topic>Computational modeling</topic><topic>Computer networks</topic><topic>In vitro</topic><topic>Negative feedback</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Timing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dockendorf, K.P.</creatorcontrib><creatorcontrib>DeMarse, T.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dockendorf, K.P.</au><au>DeMarse, T.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Amplitude and Spike Timing Dependent Plasticity</atitle><btitle>2007 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2007-08</date><risdate>2007</risdate><spage>1802</spage><epage>1806</epage><pages>1802-1806</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424413799</isbn><isbn>1424413796</isbn><eisbn>142441380X</eisbn><eisbn>9781424413805</eisbn><abstract>Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven toward stable values and unimodal distributions. The affects of input correlation on synaptic weight are shown using simulated cortical neurons. It was found that pre-and post-synaptic spike trains effect the mean, variance, and skew of the synaptic weight distributions using amplitude and spike-timing dependent plasticity. In addition, multiplicative synaptic modification noise was found to increase the variance of the weight distribution and induce positive skew.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2007.4371231</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2007 International Joint Conference on Neural Networks, 2007, p.1802-1806 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_4371231 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling Biology computing Bismuth Computational modeling Computer networks In vitro Negative feedback Neural networks Neurons Timing |
title | Amplitude and Spike Timing Dependent Plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Amplitude%20and%20Spike%20Timing%20Dependent%20Plasticity&rft.btitle=2007%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Dockendorf,%20K.P.&rft.date=2007-08&rft.spage=1802&rft.epage=1806&rft.pages=1802-1806&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424413799&rft.isbn_list=1424413796&rft_id=info:doi/10.1109/IJCNN.2007.4371231&rft.eisbn=142441380X&rft.eisbn_list=9781424413805&rft_dat=%3Cieee_6IE%3E4371231%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ec1e3ecbc7b586d8d3eee6f20a9aad9cb461b79e4606a0f2ce16a68f07188e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4371231&rfr_iscdi=true |