Loading…

Amplitude and Spike Timing Dependent Plasticity

Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven to...

Full description

Saved in:
Bibliographic Details
Main Authors: Dockendorf, K.P., DeMarse, T.B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1806
container_issue
container_start_page 1802
container_title
container_volume
creator Dockendorf, K.P.
DeMarse, T.B.
description Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven toward stable values and unimodal distributions. The affects of input correlation on synaptic weight are shown using simulated cortical neurons. It was found that pre-and post-synaptic spike trains effect the mean, variance, and skew of the synaptic weight distributions using amplitude and spike-timing dependent plasticity. In addition, multiplicative synaptic modification noise was found to increase the variance of the weight distribution and induce positive skew.
doi_str_mv 10.1109/IJCNN.2007.4371231
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4371231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4371231</ieee_id><sourcerecordid>4371231</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ec1e3ecbc7b586d8d3eee6f20a9aad9cb461b79e4606a0f2ce16a68f07188e13</originalsourceid><addsrcrecordid>eNo1j8tOwzAQRc1Loi39AdjkB5LO2K4fyyoU2qoqSGTBrnLsCTIkUdSERf8eJMLqLI7OlS5j9wgZItjFdpcfDhkH0JkUGrnACzZFyaVEYeD9kk04KkylBH3F5lab0Wlrr_-dsOKWTfv-E4ALa8WELVZNV8fhO1Di2pC8dfGLkiI2sf1IHqmjNlA7JK-164fo43C-YzeVq3uaj5yx4mld5Jt0__K8zVf7NKJeDil5JEG-9LpcGhVMEESkKg7OOhesL6XCUluSCpSDintC5ZSpQKMxhGLGHv5m42937E6xcafzcfwtfgDHe0f8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Amplitude and Spike Timing Dependent Plasticity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dockendorf, K.P. ; DeMarse, T.B.</creator><creatorcontrib>Dockendorf, K.P. ; DeMarse, T.B.</creatorcontrib><description>Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven toward stable values and unimodal distributions. The affects of input correlation on synaptic weight are shown using simulated cortical neurons. It was found that pre-and post-synaptic spike trains effect the mean, variance, and skew of the synaptic weight distributions using amplitude and spike-timing dependent plasticity. In addition, multiplicative synaptic modification noise was found to increase the variance of the weight distribution and induce positive skew.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781424413799</identifier><identifier>ISBN: 1424413796</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 142441380X</identifier><identifier>EISBN: 9781424413805</identifier><identifier>DOI: 10.1109/IJCNN.2007.4371231</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Biology computing ; Bismuth ; Computational modeling ; Computer networks ; In vitro ; Negative feedback ; Neural networks ; Neurons ; Timing</subject><ispartof>2007 International Joint Conference on Neural Networks, 2007, p.1802-1806</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4371231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4371231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dockendorf, K.P.</creatorcontrib><creatorcontrib>DeMarse, T.B.</creatorcontrib><title>Amplitude and Spike Timing Dependent Plasticity</title><title>2007 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven toward stable values and unimodal distributions. The affects of input correlation on synaptic weight are shown using simulated cortical neurons. It was found that pre-and post-synaptic spike trains effect the mean, variance, and skew of the synaptic weight distributions using amplitude and spike-timing dependent plasticity. In addition, multiplicative synaptic modification noise was found to increase the variance of the weight distribution and induce positive skew.</description><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>Bismuth</subject><subject>Computational modeling</subject><subject>Computer networks</subject><subject>In vitro</subject><subject>Negative feedback</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Timing</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781424413799</isbn><isbn>1424413796</isbn><isbn>142441380X</isbn><isbn>9781424413805</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tOwzAQRc1Loi39AdjkB5LO2K4fyyoU2qoqSGTBrnLsCTIkUdSERf8eJMLqLI7OlS5j9wgZItjFdpcfDhkH0JkUGrnACzZFyaVEYeD9kk04KkylBH3F5lab0Wlrr_-dsOKWTfv-E4ALa8WELVZNV8fhO1Di2pC8dfGLkiI2sf1IHqmjNlA7JK-164fo43C-YzeVq3uaj5yx4mld5Jt0__K8zVf7NKJeDil5JEG-9LpcGhVMEESkKg7OOhesL6XCUluSCpSDintC5ZSpQKMxhGLGHv5m42937E6xcafzcfwtfgDHe0f8</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Dockendorf, K.P.</creator><creator>DeMarse, T.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200708</creationdate><title>Amplitude and Spike Timing Dependent Plasticity</title><author>Dockendorf, K.P. ; DeMarse, T.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ec1e3ecbc7b586d8d3eee6f20a9aad9cb461b79e4606a0f2ce16a68f07188e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>Bismuth</topic><topic>Computational modeling</topic><topic>Computer networks</topic><topic>In vitro</topic><topic>Negative feedback</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Timing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dockendorf, K.P.</creatorcontrib><creatorcontrib>DeMarse, T.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dockendorf, K.P.</au><au>DeMarse, T.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Amplitude and Spike Timing Dependent Plasticity</atitle><btitle>2007 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2007-08</date><risdate>2007</risdate><spage>1802</spage><epage>1806</epage><pages>1802-1806</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781424413799</isbn><isbn>1424413796</isbn><eisbn>142441380X</eisbn><eisbn>9781424413805</eisbn><abstract>Many spike timing dependent plasticity (STDP) rules generate a bimodal distribution of synaptic weights because there is no stable equilibrium state. Our approach augments STDP with amplitude dependence providing negative feedback of synaptic weight to plasticity resulting in weights being driven toward stable values and unimodal distributions. The affects of input correlation on synaptic weight are shown using simulated cortical neurons. It was found that pre-and post-synaptic spike trains effect the mean, variance, and skew of the synaptic weight distributions using amplitude and spike-timing dependent plasticity. In addition, multiplicative synaptic modification noise was found to increase the variance of the weight distribution and induce positive skew.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2007.4371231</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2007 International Joint Conference on Neural Networks, 2007, p.1802-1806
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_4371231
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
Biology computing
Bismuth
Computational modeling
Computer networks
In vitro
Negative feedback
Neural networks
Neurons
Timing
title Amplitude and Spike Timing Dependent Plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Amplitude%20and%20Spike%20Timing%20Dependent%20Plasticity&rft.btitle=2007%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Dockendorf,%20K.P.&rft.date=2007-08&rft.spage=1802&rft.epage=1806&rft.pages=1802-1806&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781424413799&rft.isbn_list=1424413796&rft_id=info:doi/10.1109/IJCNN.2007.4371231&rft.eisbn=142441380X&rft.eisbn_list=9781424413805&rft_dat=%3Cieee_6IE%3E4371231%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ec1e3ecbc7b586d8d3eee6f20a9aad9cb461b79e4606a0f2ce16a68f07188e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4371231&rfr_iscdi=true