Loading…
Long-term time series prediction using wrappers for variable selection and clustering for data partition
In an attempt to implement long-term time series prediction based on the recursive application of a one-step-ahead multilayer neural network predictor, we have considered the eleven short time series provided by the organizers of the Special Session NN3 Neural Network Forecasting Competition, and ha...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In an attempt to implement long-term time series prediction based on the recursive application of a one-step-ahead multilayer neural network predictor, we have considered the eleven short time series provided by the organizers of the Special Session NN3 Neural Network Forecasting Competition, and have proposed a joint application of a variable selection technique and a clustering procedure. The purpose was to define unbiased partition subsets and predictors with high generalization capability, based on a wrapper methodology. The proposed approach overcomes the performance of the predictor that considers all the lags in the regression vector. After obtaining the eleven long-term predictors, we conclude the paper presenting the eighteen multi-step predictions for each time series, as requested in the competition. |
---|---|
ISSN: | 2161-4393 2161-4407 |
DOI: | 10.1109/IJCNN.2007.4371450 |