Loading…

Design and Implementation of an Automated Anomaly Detection System for Crime

Anomaly detection in the law enforcement domain is very important because it gives police agencies a method for discerning the difference between normal fluctuations and fundamental changes in a specific crime distribution. Currently, crime analysts must monitor the data manually to detect these ano...

Full description

Saved in:
Bibliographic Details
Main Authors: Bordogna, J.T., Brown, D.E., Conklin, J.H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Bordogna, J.T.
Brown, D.E.
Conklin, J.H.
description Anomaly detection in the law enforcement domain is very important because it gives police agencies a method for discerning the difference between normal fluctuations and fundamental changes in a specific crime distribution. Currently, crime analysts must monitor the data manually to detect these anomalies because an automated tool does not exist. This paper describes the analysis, design, and implementation of a system, entitled Sentinel, which directly addresses the anomaly detection problem. The Sentinel system is comprised of a robust anomaly detection back-end program built around a zero modified Poisson model and a user-friendly web interface. The back-end program constantly monitors user specified crime levels over time and automatically alerts users via the web interface when these crime levels change significantly. This tool has been completed and integrated into the Web-based criminal analysis toolkit (WebCAT), a criminal analysis program developed by the Systems Engineering Department at the University of Virginia. Although more long term comprehensive testing remains, initial results show that the tool provides a more accurate, time efficient method of detecting anomalies in criminal data sets than currently exists.
doi_str_mv 10.1109/SIEDS.2007.4374005
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4374005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4374005</ieee_id><sourcerecordid>4374005</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4f2c5949dd199b51cdef4e0f9982e74e728357aa641acfc10e7b26060018fbbc3</originalsourceid><addsrcrecordid>eNpVkE9PhDAQxWuMiWblC-ilXwCclkLpkcCqJCQe2PumtFOD4c8G6oFvb6N78fTm_TKZeXmEPDFIGAP10jXHuks4gExEKgVAdkMiJQsmuBCMFznc_vNZek-ibfsCACbzQNgDaWvchs-Z6tnSZrqMOOHstR-WmS4uUFp--2XSHi0t5zCMO63Ro_nd6PbN40TdstJqHSZ8JHdOjxtGVz2Q0-vxVL3H7cdbU5VtPCjwsXDcZEooa5lSfcaMRScQnFIFRylQ8iLNpNYhoTbOMEDZ8xzykLpwfW_SA3n-Ozsg4vkSPut1P18rSH8AbmpPOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design and Implementation of an Automated Anomaly Detection System for Crime</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bordogna, J.T. ; Brown, D.E. ; Conklin, J.H.</creator><creatorcontrib>Bordogna, J.T. ; Brown, D.E. ; Conklin, J.H.</creatorcontrib><description>Anomaly detection in the law enforcement domain is very important because it gives police agencies a method for discerning the difference between normal fluctuations and fundamental changes in a specific crime distribution. Currently, crime analysts must monitor the data manually to detect these anomalies because an automated tool does not exist. This paper describes the analysis, design, and implementation of a system, entitled Sentinel, which directly addresses the anomaly detection problem. The Sentinel system is comprised of a robust anomaly detection back-end program built around a zero modified Poisson model and a user-friendly web interface. The back-end program constantly monitors user specified crime levels over time and automatically alerts users via the web interface when these crime levels change significantly. This tool has been completed and integrated into the Web-based criminal analysis toolkit (WebCAT), a criminal analysis program developed by the Systems Engineering Department at the University of Virginia. Although more long term comprehensive testing remains, initial results show that the tool provides a more accurate, time efficient method of detecting anomalies in criminal data sets than currently exists.</description><identifier>ISBN: 9781424412853</identifier><identifier>ISBN: 1424412854</identifier><identifier>EISBN: 9781424412860</identifier><identifier>EISBN: 1424412862</identifier><identifier>DOI: 10.1109/SIEDS.2007.4374005</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computerized monitoring ; Event detection ; Fluctuations ; Information analysis ; Intrusion detection ; Law enforcement ; Prototypes ; Robustness ; System testing ; Systems engineering and theory</subject><ispartof>2007 IEEE Systems and Information Engineering Design Symposium, 2007, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4374005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4374005$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bordogna, J.T.</creatorcontrib><creatorcontrib>Brown, D.E.</creatorcontrib><creatorcontrib>Conklin, J.H.</creatorcontrib><title>Design and Implementation of an Automated Anomaly Detection System for Crime</title><title>2007 IEEE Systems and Information Engineering Design Symposium</title><addtitle>SIEDS</addtitle><description>Anomaly detection in the law enforcement domain is very important because it gives police agencies a method for discerning the difference between normal fluctuations and fundamental changes in a specific crime distribution. Currently, crime analysts must monitor the data manually to detect these anomalies because an automated tool does not exist. This paper describes the analysis, design, and implementation of a system, entitled Sentinel, which directly addresses the anomaly detection problem. The Sentinel system is comprised of a robust anomaly detection back-end program built around a zero modified Poisson model and a user-friendly web interface. The back-end program constantly monitors user specified crime levels over time and automatically alerts users via the web interface when these crime levels change significantly. This tool has been completed and integrated into the Web-based criminal analysis toolkit (WebCAT), a criminal analysis program developed by the Systems Engineering Department at the University of Virginia. Although more long term comprehensive testing remains, initial results show that the tool provides a more accurate, time efficient method of detecting anomalies in criminal data sets than currently exists.</description><subject>Computerized monitoring</subject><subject>Event detection</subject><subject>Fluctuations</subject><subject>Information analysis</subject><subject>Intrusion detection</subject><subject>Law enforcement</subject><subject>Prototypes</subject><subject>Robustness</subject><subject>System testing</subject><subject>Systems engineering and theory</subject><isbn>9781424412853</isbn><isbn>1424412854</isbn><isbn>9781424412860</isbn><isbn>1424412862</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkE9PhDAQxWuMiWblC-ilXwCclkLpkcCqJCQe2PumtFOD4c8G6oFvb6N78fTm_TKZeXmEPDFIGAP10jXHuks4gExEKgVAdkMiJQsmuBCMFznc_vNZek-ibfsCACbzQNgDaWvchs-Z6tnSZrqMOOHstR-WmS4uUFp--2XSHi0t5zCMO63Ro_nd6PbN40TdstJqHSZ8JHdOjxtGVz2Q0-vxVL3H7cdbU5VtPCjwsXDcZEooa5lSfcaMRScQnFIFRylQ8iLNpNYhoTbOMEDZ8xzykLpwfW_SA3n-Ozsg4vkSPut1P18rSH8AbmpPOQ</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Bordogna, J.T.</creator><creator>Brown, D.E.</creator><creator>Conklin, J.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200704</creationdate><title>Design and Implementation of an Automated Anomaly Detection System for Crime</title><author>Bordogna, J.T. ; Brown, D.E. ; Conklin, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4f2c5949dd199b51cdef4e0f9982e74e728357aa641acfc10e7b26060018fbbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computerized monitoring</topic><topic>Event detection</topic><topic>Fluctuations</topic><topic>Information analysis</topic><topic>Intrusion detection</topic><topic>Law enforcement</topic><topic>Prototypes</topic><topic>Robustness</topic><topic>System testing</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Bordogna, J.T.</creatorcontrib><creatorcontrib>Brown, D.E.</creatorcontrib><creatorcontrib>Conklin, J.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bordogna, J.T.</au><au>Brown, D.E.</au><au>Conklin, J.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and Implementation of an Automated Anomaly Detection System for Crime</atitle><btitle>2007 IEEE Systems and Information Engineering Design Symposium</btitle><stitle>SIEDS</stitle><date>2007-04</date><risdate>2007</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424412853</isbn><isbn>1424412854</isbn><eisbn>9781424412860</eisbn><eisbn>1424412862</eisbn><abstract>Anomaly detection in the law enforcement domain is very important because it gives police agencies a method for discerning the difference between normal fluctuations and fundamental changes in a specific crime distribution. Currently, crime analysts must monitor the data manually to detect these anomalies because an automated tool does not exist. This paper describes the analysis, design, and implementation of a system, entitled Sentinel, which directly addresses the anomaly detection problem. The Sentinel system is comprised of a robust anomaly detection back-end program built around a zero modified Poisson model and a user-friendly web interface. The back-end program constantly monitors user specified crime levels over time and automatically alerts users via the web interface when these crime levels change significantly. This tool has been completed and integrated into the Web-based criminal analysis toolkit (WebCAT), a criminal analysis program developed by the Systems Engineering Department at the University of Virginia. Although more long term comprehensive testing remains, initial results show that the tool provides a more accurate, time efficient method of detecting anomalies in criminal data sets than currently exists.</abstract><pub>IEEE</pub><doi>10.1109/SIEDS.2007.4374005</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424412853
ispartof 2007 IEEE Systems and Information Engineering Design Symposium, 2007, p.1-6
issn
language eng
recordid cdi_ieee_primary_4374005
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computerized monitoring
Event detection
Fluctuations
Information analysis
Intrusion detection
Law enforcement
Prototypes
Robustness
System testing
Systems engineering and theory
title Design and Implementation of an Automated Anomaly Detection System for Crime
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20Implementation%20of%20an%20Automated%20Anomaly%20Detection%20System%20for%20Crime&rft.btitle=2007%20IEEE%20Systems%20and%20Information%20Engineering%20Design%20Symposium&rft.au=Bordogna,%20J.T.&rft.date=2007-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424412853&rft.isbn_list=1424412854&rft_id=info:doi/10.1109/SIEDS.2007.4374005&rft.eisbn=9781424412860&rft.eisbn_list=1424412862&rft_dat=%3Cieee_6IE%3E4374005%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-4f2c5949dd199b51cdef4e0f9982e74e728357aa641acfc10e7b26060018fbbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4374005&rfr_iscdi=true