Loading…

Using RBF Neural Network for Fault Diagnosis in Satellite ADS

In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both a...

Full description

Saved in:
Bibliographic Details
Main Authors: Cai, Lin, Huang, Yuancan, Lu, Shaolin, Chen, Jiabin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1055
container_issue
container_start_page 1052
container_title
container_volume
creator Cai, Lin
Huang, Yuancan
Lu, Shaolin
Chen, Jiabin
description In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converge quickly. Simulation results demonstrate that the proposed approach is effective for fault diagnosis in satellite attitude determination system.
doi_str_mv 10.1109/ICCA.2007.4376518
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4376518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4376518</ieee_id><sourcerecordid>4376518</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-309a8c99961932d57b0669891ab83d9e3efe379c52f33292eb269535689ee52e3</originalsourceid><addsrcrecordid>eNpVkMtKw0AUQMcXWGo-QNzMDyTeec9duIip0UJRsHVdJu1NGY2JJCni3ytYBFdnceAsDmOXAjIhAK_nRZFnEsBlWjlrhD9iCTovtNQavPD6mE0Eap8qbdzJP-fc6Z_TeM6SYXgFAAHeWIAJu3kZYrvjz7clf6R9H5ofjJ9d_8brrudl2Dcjn8Wwa7shDjy2fBlGapo4Es9nywt2VodmoOTAKVuVd6viIV083c-LfJFGhDFVgMFvENEKVHJrXAXWokcRKq-2SIpqUg43RtZKSZRUSYtGGeuRyEhSU3b1m41EtP7o43vov9aHF-obK2BLBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using RBF Neural Network for Fault Diagnosis in Satellite ADS</title><source>IEEE Xplore All Conference Series</source><creator>Cai, Lin ; Huang, Yuancan ; Lu, Shaolin ; Chen, Jiabin</creator><creatorcontrib>Cai, Lin ; Huang, Yuancan ; Lu, Shaolin ; Chen, Jiabin</creatorcontrib><description>In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converge quickly. Simulation results demonstrate that the proposed approach is effective for fault diagnosis in satellite attitude determination system.</description><identifier>ISSN: 1948-3449</identifier><identifier>ISBN: 9781424408177</identifier><identifier>ISBN: 1424408172</identifier><identifier>EISSN: 1948-3457</identifier><identifier>EISBN: 9781424408184</identifier><identifier>EISBN: 1424408180</identifier><identifier>DOI: 10.1109/ICCA.2007.4376518</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Clustering algorithms ; Fault diagnosis ; Filtering algorithms ; Kalman filters ; Neural networks ; Position measurement ; Satellites ; Sensor systems ; Vectors</subject><ispartof>2007 IEEE International Conference on Control and Automation, 2007, p.1052-1055</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4376518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4376518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>Huang, Yuancan</creatorcontrib><creatorcontrib>Lu, Shaolin</creatorcontrib><creatorcontrib>Chen, Jiabin</creatorcontrib><title>Using RBF Neural Network for Fault Diagnosis in Satellite ADS</title><title>2007 IEEE International Conference on Control and Automation</title><addtitle>ICCA</addtitle><description>In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converge quickly. Simulation results demonstrate that the proposed approach is effective for fault diagnosis in satellite attitude determination system.</description><subject>Artificial neural networks</subject><subject>Clustering algorithms</subject><subject>Fault diagnosis</subject><subject>Filtering algorithms</subject><subject>Kalman filters</subject><subject>Neural networks</subject><subject>Position measurement</subject><subject>Satellites</subject><subject>Sensor systems</subject><subject>Vectors</subject><issn>1948-3449</issn><issn>1948-3457</issn><isbn>9781424408177</isbn><isbn>1424408172</isbn><isbn>9781424408184</isbn><isbn>1424408180</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKw0AUQMcXWGo-QNzMDyTeec9duIip0UJRsHVdJu1NGY2JJCni3ytYBFdnceAsDmOXAjIhAK_nRZFnEsBlWjlrhD9iCTovtNQavPD6mE0Eap8qbdzJP-fc6Z_TeM6SYXgFAAHeWIAJu3kZYrvjz7clf6R9H5ofjJ9d_8brrudl2Dcjn8Wwa7shDjy2fBlGapo4Es9nywt2VodmoOTAKVuVd6viIV083c-LfJFGhDFVgMFvENEKVHJrXAXWokcRKq-2SIpqUg43RtZKSZRUSYtGGeuRyEhSU3b1m41EtP7o43vov9aHF-obK2BLBg</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Cai, Lin</creator><creator>Huang, Yuancan</creator><creator>Lu, Shaolin</creator><creator>Chen, Jiabin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>Using RBF Neural Network for Fault Diagnosis in Satellite ADS</title><author>Cai, Lin ; Huang, Yuancan ; Lu, Shaolin ; Chen, Jiabin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-309a8c99961932d57b0669891ab83d9e3efe379c52f33292eb269535689ee52e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial neural networks</topic><topic>Clustering algorithms</topic><topic>Fault diagnosis</topic><topic>Filtering algorithms</topic><topic>Kalman filters</topic><topic>Neural networks</topic><topic>Position measurement</topic><topic>Satellites</topic><topic>Sensor systems</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>Huang, Yuancan</creatorcontrib><creatorcontrib>Lu, Shaolin</creatorcontrib><creatorcontrib>Chen, Jiabin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Lin</au><au>Huang, Yuancan</au><au>Lu, Shaolin</au><au>Chen, Jiabin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using RBF Neural Network for Fault Diagnosis in Satellite ADS</atitle><btitle>2007 IEEE International Conference on Control and Automation</btitle><stitle>ICCA</stitle><date>2007-05</date><risdate>2007</risdate><spage>1052</spage><epage>1055</epage><pages>1052-1055</pages><issn>1948-3449</issn><eissn>1948-3457</eissn><isbn>9781424408177</isbn><isbn>1424408172</isbn><eisbn>9781424408184</eisbn><eisbn>1424408180</eisbn><abstract>In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converge quickly. Simulation results demonstrate that the proposed approach is effective for fault diagnosis in satellite attitude determination system.</abstract><pub>IEEE</pub><doi>10.1109/ICCA.2007.4376518</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-3449
ispartof 2007 IEEE International Conference on Control and Automation, 2007, p.1052-1055
issn 1948-3449
1948-3457
language eng
recordid cdi_ieee_primary_4376518
source IEEE Xplore All Conference Series
subjects Artificial neural networks
Clustering algorithms
Fault diagnosis
Filtering algorithms
Kalman filters
Neural networks
Position measurement
Satellites
Sensor systems
Vectors
title Using RBF Neural Network for Fault Diagnosis in Satellite ADS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20RBF%20Neural%20Network%20for%20Fault%20Diagnosis%20in%20Satellite%20ADS&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Control%20and%20Automation&rft.au=Cai,%20Lin&rft.date=2007-05&rft.spage=1052&rft.epage=1055&rft.pages=1052-1055&rft.issn=1948-3449&rft.eissn=1948-3457&rft.isbn=9781424408177&rft.isbn_list=1424408172&rft_id=info:doi/10.1109/ICCA.2007.4376518&rft.eisbn=9781424408184&rft.eisbn_list=1424408180&rft_dat=%3Cieee_CHZPO%3E4376518%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-309a8c99961932d57b0669891ab83d9e3efe379c52f33292eb269535689ee52e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4376518&rfr_iscdi=true