Loading…
Using RBF Neural Network for Fault Diagnosis in Satellite ADS
In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1055 |
container_issue | |
container_start_page | 1052 |
container_title | |
container_volume | |
creator | Cai, Lin Huang, Yuancan Lu, Shaolin Chen, Jiabin |
description | In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converge quickly. Simulation results demonstrate that the proposed approach is effective for fault diagnosis in satellite attitude determination system. |
doi_str_mv | 10.1109/ICCA.2007.4376518 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4376518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4376518</ieee_id><sourcerecordid>4376518</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-309a8c99961932d57b0669891ab83d9e3efe379c52f33292eb269535689ee52e3</originalsourceid><addsrcrecordid>eNpVkMtKw0AUQMcXWGo-QNzMDyTeec9duIip0UJRsHVdJu1NGY2JJCni3ytYBFdnceAsDmOXAjIhAK_nRZFnEsBlWjlrhD9iCTovtNQavPD6mE0Eap8qbdzJP-fc6Z_TeM6SYXgFAAHeWIAJu3kZYrvjz7clf6R9H5ofjJ9d_8brrudl2Dcjn8Wwa7shDjy2fBlGapo4Es9nywt2VodmoOTAKVuVd6viIV083c-LfJFGhDFVgMFvENEKVHJrXAXWokcRKq-2SIpqUg43RtZKSZRUSYtGGeuRyEhSU3b1m41EtP7o43vov9aHF-obK2BLBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using RBF Neural Network for Fault Diagnosis in Satellite ADS</title><source>IEEE Xplore All Conference Series</source><creator>Cai, Lin ; Huang, Yuancan ; Lu, Shaolin ; Chen, Jiabin</creator><creatorcontrib>Cai, Lin ; Huang, Yuancan ; Lu, Shaolin ; Chen, Jiabin</creatorcontrib><description>In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converge quickly. Simulation results demonstrate that the proposed approach is effective for fault diagnosis in satellite attitude determination system.</description><identifier>ISSN: 1948-3449</identifier><identifier>ISBN: 9781424408177</identifier><identifier>ISBN: 1424408172</identifier><identifier>EISSN: 1948-3457</identifier><identifier>EISBN: 9781424408184</identifier><identifier>EISBN: 1424408180</identifier><identifier>DOI: 10.1109/ICCA.2007.4376518</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Clustering algorithms ; Fault diagnosis ; Filtering algorithms ; Kalman filters ; Neural networks ; Position measurement ; Satellites ; Sensor systems ; Vectors</subject><ispartof>2007 IEEE International Conference on Control and Automation, 2007, p.1052-1055</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4376518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4376518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>Huang, Yuancan</creatorcontrib><creatorcontrib>Lu, Shaolin</creatorcontrib><creatorcontrib>Chen, Jiabin</creatorcontrib><title>Using RBF Neural Network for Fault Diagnosis in Satellite ADS</title><title>2007 IEEE International Conference on Control and Automation</title><addtitle>ICCA</addtitle><description>In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converge quickly. Simulation results demonstrate that the proposed approach is effective for fault diagnosis in satellite attitude determination system.</description><subject>Artificial neural networks</subject><subject>Clustering algorithms</subject><subject>Fault diagnosis</subject><subject>Filtering algorithms</subject><subject>Kalman filters</subject><subject>Neural networks</subject><subject>Position measurement</subject><subject>Satellites</subject><subject>Sensor systems</subject><subject>Vectors</subject><issn>1948-3449</issn><issn>1948-3457</issn><isbn>9781424408177</isbn><isbn>1424408172</isbn><isbn>9781424408184</isbn><isbn>1424408180</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKw0AUQMcXWGo-QNzMDyTeec9duIip0UJRsHVdJu1NGY2JJCni3ytYBFdnceAsDmOXAjIhAK_nRZFnEsBlWjlrhD9iCTovtNQavPD6mE0Eap8qbdzJP-fc6Z_TeM6SYXgFAAHeWIAJu3kZYrvjz7clf6R9H5ofjJ9d_8brrudl2Dcjn8Wwa7shDjy2fBlGapo4Es9nywt2VodmoOTAKVuVd6viIV083c-LfJFGhDFVgMFvENEKVHJrXAXWokcRKq-2SIpqUg43RtZKSZRUSYtGGeuRyEhSU3b1m41EtP7o43vov9aHF-obK2BLBg</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Cai, Lin</creator><creator>Huang, Yuancan</creator><creator>Lu, Shaolin</creator><creator>Chen, Jiabin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>Using RBF Neural Network for Fault Diagnosis in Satellite ADS</title><author>Cai, Lin ; Huang, Yuancan ; Lu, Shaolin ; Chen, Jiabin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-309a8c99961932d57b0669891ab83d9e3efe379c52f33292eb269535689ee52e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial neural networks</topic><topic>Clustering algorithms</topic><topic>Fault diagnosis</topic><topic>Filtering algorithms</topic><topic>Kalman filters</topic><topic>Neural networks</topic><topic>Position measurement</topic><topic>Satellites</topic><topic>Sensor systems</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>Huang, Yuancan</creatorcontrib><creatorcontrib>Lu, Shaolin</creatorcontrib><creatorcontrib>Chen, Jiabin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Lin</au><au>Huang, Yuancan</au><au>Lu, Shaolin</au><au>Chen, Jiabin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using RBF Neural Network for Fault Diagnosis in Satellite ADS</atitle><btitle>2007 IEEE International Conference on Control and Automation</btitle><stitle>ICCA</stitle><date>2007-05</date><risdate>2007</risdate><spage>1052</spage><epage>1055</epage><pages>1052-1055</pages><issn>1948-3449</issn><eissn>1948-3457</eissn><isbn>9781424408177</isbn><isbn>1424408172</isbn><eisbn>9781424408184</eisbn><eisbn>1424408180</eisbn><abstract>In this paper, a new hybrid learning strategy composed of K-means clustering algorithm and Kalman filtering is employed to train radial based function (RBF) neural network for fault diagnosis in satellite attitude determination system. Because Kalman filtering and K-means clustering algorithm both adopt linear update rule, their combination produces a new hybrid training algorithm that can converge quickly. Simulation results demonstrate that the proposed approach is effective for fault diagnosis in satellite attitude determination system.</abstract><pub>IEEE</pub><doi>10.1109/ICCA.2007.4376518</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-3449 |
ispartof | 2007 IEEE International Conference on Control and Automation, 2007, p.1052-1055 |
issn | 1948-3449 1948-3457 |
language | eng |
recordid | cdi_ieee_primary_4376518 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks Clustering algorithms Fault diagnosis Filtering algorithms Kalman filters Neural networks Position measurement Satellites Sensor systems Vectors |
title | Using RBF Neural Network for Fault Diagnosis in Satellite ADS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20RBF%20Neural%20Network%20for%20Fault%20Diagnosis%20in%20Satellite%20ADS&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Control%20and%20Automation&rft.au=Cai,%20Lin&rft.date=2007-05&rft.spage=1052&rft.epage=1055&rft.pages=1052-1055&rft.issn=1948-3449&rft.eissn=1948-3457&rft.isbn=9781424408177&rft.isbn_list=1424408172&rft_id=info:doi/10.1109/ICCA.2007.4376518&rft.eisbn=9781424408184&rft.eisbn_list=1424408180&rft_dat=%3Cieee_CHZPO%3E4376518%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-309a8c99961932d57b0669891ab83d9e3efe379c52f33292eb269535689ee52e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4376518&rfr_iscdi=true |