Loading…

Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images

This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b dat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2007-12, Vol.45 (12), p.4105-4118
Main Authors: Gomez-Chova, L., Camps-Valls, G., Calpe-Maravilla, J., Guanter, L., Moreno, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3
cites cdi_FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3
container_end_page 4118
container_issue 12
container_start_page 4105
container_title IEEE transactions on geoscience and remote sensing
container_volume 45
creator Gomez-Chova, L.
Camps-Valls, G.
Calpe-Maravilla, J.
Guanter, L.
Moreno, J.
description This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and water-vapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-probability output is then combined with a spectral unmixing procedure to provide a cloud-abundance product instead of binary flags. The method is conceived to be robust and applicable to a broad range of actual situations with high variability of cloud types, presence of ground covers with bright and white spectra, and changing illumination conditions or observation geometry. The presented method has been shown to outperform the MERIS level-2 cloud flag in critical cloud-screening situations, such as over ice/snow covers and around cloud borders. The proposed modular methodology constitutes a general framework that can be applied to multispectral images acquired by spaceborne sensors working in the visible and near-infrared spectral range with proper spectral information to characterize atmospheric-oxygen and water-vapor absorptions.
doi_str_mv 10.1109/TGRS.2007.905312
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4378555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4378555</ieee_id><sourcerecordid>2333765621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4MoOKd3wUsRxFO3l7ykTW-OMWdhU9im15Bm6ezo2pm0B_97OzYUPL3D-36_9_gIuaUwoBSS4Wq6WA4YQDxIQCBlZ6RHhZAhRJyfkx7QJAqZTNglufJ-C0C5oHGPPI3Lul2HS-OsrYpqE4zKTe2K5nMX5LULJq8f6XK0Gs4ni3QZzNuyKfzemsbpMkh3emP9NbnIdentzWn2yfvzZDV-CWdv03Q8moUGBWvCjEvM0QKjMs7QsIwbxrJEcEgYgwSk0NxwC4ZpqRlaainyHNF0OY6wxj55PPbuXf3VWt-oXeGNLUtd2br1SsYRYxhF2JH3_8ht3bqqe07JqLuHSHkHwREyrvbe2VztXbHT7ltRUAeh6iBUHYSqo9Au8nDq1d7oMne6MoX_yyUyZnEsOu7uyBXW2t81x1gKIfAHnQt7Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864093314</pqid></control><display><type>article</type><title>Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images</title><source>IEEE Xplore (Online service)</source><creator>Gomez-Chova, L. ; Camps-Valls, G. ; Calpe-Maravilla, J. ; Guanter, L. ; Moreno, J.</creator><creatorcontrib>Gomez-Chova, L. ; Camps-Valls, G. ; Calpe-Maravilla, J. ; Guanter, L. ; Moreno, J.</creatorcontrib><description>This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and water-vapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-probability output is then combined with a spectral unmixing procedure to provide a cloud-abundance product instead of binary flags. The method is conceived to be robust and applicable to a broad range of actual situations with high variability of cloud types, presence of ground covers with bright and white spectra, and changing illumination conditions or observation geometry. The presented method has been shown to outperform the MERIS level-2 cloud flag in critical cloud-screening situations, such as over ice/snow covers and around cloud borders. The proposed modular methodology constitutes a general framework that can be applied to multispectral images acquired by spaceborne sensors working in the visible and near-infrared spectral range with proper spectral information to characterize atmospheric-oxygen and water-vapor absorptions.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2007.905312</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Absorption ; Applied geophysics ; Brightness ; Classification algorithms ; Cloud screening ; Clouds ; Data mining ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Instruments ; Internal geophysics ; Medium Resolution Imaging Spectrometer (MERIS) ; MERIS ; Meteorology ; multispectral images ; Multispectral imaging ; Robustness ; Satellites ; spectral unmixing ; unsupervised classification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2007-12, Vol.45 (12), p.4105-4118</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3</citedby><cites>FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4378555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19872775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Chova, L.</creatorcontrib><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Calpe-Maravilla, J.</creatorcontrib><creatorcontrib>Guanter, L.</creatorcontrib><creatorcontrib>Moreno, J.</creatorcontrib><title>Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and water-vapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-probability output is then combined with a spectral unmixing procedure to provide a cloud-abundance product instead of binary flags. The method is conceived to be robust and applicable to a broad range of actual situations with high variability of cloud types, presence of ground covers with bright and white spectra, and changing illumination conditions or observation geometry. The presented method has been shown to outperform the MERIS level-2 cloud flag in critical cloud-screening situations, such as over ice/snow covers and around cloud borders. The proposed modular methodology constitutes a general framework that can be applied to multispectral images acquired by spaceborne sensors working in the visible and near-infrared spectral range with proper spectral information to characterize atmospheric-oxygen and water-vapor absorptions.</description><subject>Absorption</subject><subject>Applied geophysics</subject><subject>Brightness</subject><subject>Classification algorithms</subject><subject>Cloud screening</subject><subject>Clouds</subject><subject>Data mining</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Instruments</subject><subject>Internal geophysics</subject><subject>Medium Resolution Imaging Spectrometer (MERIS)</subject><subject>MERIS</subject><subject>Meteorology</subject><subject>multispectral images</subject><subject>Multispectral imaging</subject><subject>Robustness</subject><subject>Satellites</subject><subject>spectral unmixing</subject><subject>unsupervised classification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAUh4MoOKd3wUsRxFO3l7ykTW-OMWdhU9im15Bm6ezo2pm0B_97OzYUPL3D-36_9_gIuaUwoBSS4Wq6WA4YQDxIQCBlZ6RHhZAhRJyfkx7QJAqZTNglufJ-C0C5oHGPPI3Lul2HS-OsrYpqE4zKTe2K5nMX5LULJq8f6XK0Gs4ni3QZzNuyKfzemsbpMkh3emP9NbnIdentzWn2yfvzZDV-CWdv03Q8moUGBWvCjEvM0QKjMs7QsIwbxrJEcEgYgwSk0NxwC4ZpqRlaainyHNF0OY6wxj55PPbuXf3VWt-oXeGNLUtd2br1SsYRYxhF2JH3_8ht3bqqe07JqLuHSHkHwREyrvbe2VztXbHT7ltRUAeh6iBUHYSqo9Au8nDq1d7oMne6MoX_yyUyZnEsOu7uyBXW2t81x1gKIfAHnQt7Dw</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Gomez-Chova, L.</creator><creator>Camps-Valls, G.</creator><creator>Calpe-Maravilla, J.</creator><creator>Guanter, L.</creator><creator>Moreno, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20071201</creationdate><title>Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images</title><author>Gomez-Chova, L. ; Camps-Valls, G. ; Calpe-Maravilla, J. ; Guanter, L. ; Moreno, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Absorption</topic><topic>Applied geophysics</topic><topic>Brightness</topic><topic>Classification algorithms</topic><topic>Cloud screening</topic><topic>Clouds</topic><topic>Data mining</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Instruments</topic><topic>Internal geophysics</topic><topic>Medium Resolution Imaging Spectrometer (MERIS)</topic><topic>MERIS</topic><topic>Meteorology</topic><topic>multispectral images</topic><topic>Multispectral imaging</topic><topic>Robustness</topic><topic>Satellites</topic><topic>spectral unmixing</topic><topic>unsupervised classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Chova, L.</creatorcontrib><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Calpe-Maravilla, J.</creatorcontrib><creatorcontrib>Guanter, L.</creatorcontrib><creatorcontrib>Moreno, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Chova, L.</au><au>Camps-Valls, G.</au><au>Calpe-Maravilla, J.</au><au>Guanter, L.</au><au>Moreno, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>45</volume><issue>12</issue><spage>4105</spage><epage>4118</epage><pages>4105-4118</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and water-vapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-probability output is then combined with a spectral unmixing procedure to provide a cloud-abundance product instead of binary flags. The method is conceived to be robust and applicable to a broad range of actual situations with high variability of cloud types, presence of ground covers with bright and white spectra, and changing illumination conditions or observation geometry. The presented method has been shown to outperform the MERIS level-2 cloud flag in critical cloud-screening situations, such as over ice/snow covers and around cloud borders. The proposed modular methodology constitutes a general framework that can be applied to multispectral images acquired by spaceborne sensors working in the visible and near-infrared spectral range with proper spectral information to characterize atmospheric-oxygen and water-vapor absorptions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2007.905312</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2007-12, Vol.45 (12), p.4105-4118
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_4378555
source IEEE Xplore (Online service)
subjects Absorption
Applied geophysics
Brightness
Classification algorithms
Cloud screening
Clouds
Data mining
Earth sciences
Earth, ocean, space
Exact sciences and technology
Instruments
Internal geophysics
Medium Resolution Imaging Spectrometer (MERIS)
MERIS
Meteorology
multispectral images
Multispectral imaging
Robustness
Satellites
spectral unmixing
unsupervised classification
title Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud-Screening%20Algorithm%20for%20ENVISAT/MERIS%20Multispectral%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Gomez-Chova,%20L.&rft.date=2007-12-01&rft.volume=45&rft.issue=12&rft.spage=4105&rft.epage=4118&rft.pages=4105-4118&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2007.905312&rft_dat=%3Cproquest_ieee_%3E2333765621%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864093314&rft_id=info:pmid/&rft_ieee_id=4378555&rfr_iscdi=true