Loading…
Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images
This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b dat...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2007-12, Vol.45 (12), p.4105-4118 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3 |
container_end_page | 4118 |
container_issue | 12 |
container_start_page | 4105 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 45 |
creator | Gomez-Chova, L. Camps-Valls, G. Calpe-Maravilla, J. Guanter, L. Moreno, J. |
description | This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and water-vapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-probability output is then combined with a spectral unmixing procedure to provide a cloud-abundance product instead of binary flags. The method is conceived to be robust and applicable to a broad range of actual situations with high variability of cloud types, presence of ground covers with bright and white spectra, and changing illumination conditions or observation geometry. The presented method has been shown to outperform the MERIS level-2 cloud flag in critical cloud-screening situations, such as over ice/snow covers and around cloud borders. The proposed modular methodology constitutes a general framework that can be applied to multispectral images acquired by spaceborne sensors working in the visible and near-infrared spectral range with proper spectral information to characterize atmospheric-oxygen and water-vapor absorptions. |
doi_str_mv | 10.1109/TGRS.2007.905312 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4378555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4378555</ieee_id><sourcerecordid>2333765621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4MoOKd3wUsRxFO3l7ykTW-OMWdhU9im15Bm6ezo2pm0B_97OzYUPL3D-36_9_gIuaUwoBSS4Wq6WA4YQDxIQCBlZ6RHhZAhRJyfkx7QJAqZTNglufJ-C0C5oHGPPI3Lul2HS-OsrYpqE4zKTe2K5nMX5LULJq8f6XK0Gs4ni3QZzNuyKfzemsbpMkh3emP9NbnIdentzWn2yfvzZDV-CWdv03Q8moUGBWvCjEvM0QKjMs7QsIwbxrJEcEgYgwSk0NxwC4ZpqRlaainyHNF0OY6wxj55PPbuXf3VWt-oXeGNLUtd2br1SsYRYxhF2JH3_8ht3bqqe07JqLuHSHkHwREyrvbe2VztXbHT7ltRUAeh6iBUHYSqo9Au8nDq1d7oMne6MoX_yyUyZnEsOu7uyBXW2t81x1gKIfAHnQt7Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864093314</pqid></control><display><type>article</type><title>Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images</title><source>IEEE Xplore (Online service)</source><creator>Gomez-Chova, L. ; Camps-Valls, G. ; Calpe-Maravilla, J. ; Guanter, L. ; Moreno, J.</creator><creatorcontrib>Gomez-Chova, L. ; Camps-Valls, G. ; Calpe-Maravilla, J. ; Guanter, L. ; Moreno, J.</creatorcontrib><description>This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and water-vapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-probability output is then combined with a spectral unmixing procedure to provide a cloud-abundance product instead of binary flags. The method is conceived to be robust and applicable to a broad range of actual situations with high variability of cloud types, presence of ground covers with bright and white spectra, and changing illumination conditions or observation geometry. The presented method has been shown to outperform the MERIS level-2 cloud flag in critical cloud-screening situations, such as over ice/snow covers and around cloud borders. The proposed modular methodology constitutes a general framework that can be applied to multispectral images acquired by spaceborne sensors working in the visible and near-infrared spectral range with proper spectral information to characterize atmospheric-oxygen and water-vapor absorptions.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2007.905312</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Absorption ; Applied geophysics ; Brightness ; Classification algorithms ; Cloud screening ; Clouds ; Data mining ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Instruments ; Internal geophysics ; Medium Resolution Imaging Spectrometer (MERIS) ; MERIS ; Meteorology ; multispectral images ; Multispectral imaging ; Robustness ; Satellites ; spectral unmixing ; unsupervised classification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2007-12, Vol.45 (12), p.4105-4118</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3</citedby><cites>FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4378555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19872775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Chova, L.</creatorcontrib><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Calpe-Maravilla, J.</creatorcontrib><creatorcontrib>Guanter, L.</creatorcontrib><creatorcontrib>Moreno, J.</creatorcontrib><title>Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and water-vapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-probability output is then combined with a spectral unmixing procedure to provide a cloud-abundance product instead of binary flags. The method is conceived to be robust and applicable to a broad range of actual situations with high variability of cloud types, presence of ground covers with bright and white spectra, and changing illumination conditions or observation geometry. The presented method has been shown to outperform the MERIS level-2 cloud flag in critical cloud-screening situations, such as over ice/snow covers and around cloud borders. The proposed modular methodology constitutes a general framework that can be applied to multispectral images acquired by spaceborne sensors working in the visible and near-infrared spectral range with proper spectral information to characterize atmospheric-oxygen and water-vapor absorptions.</description><subject>Absorption</subject><subject>Applied geophysics</subject><subject>Brightness</subject><subject>Classification algorithms</subject><subject>Cloud screening</subject><subject>Clouds</subject><subject>Data mining</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Instruments</subject><subject>Internal geophysics</subject><subject>Medium Resolution Imaging Spectrometer (MERIS)</subject><subject>MERIS</subject><subject>Meteorology</subject><subject>multispectral images</subject><subject>Multispectral imaging</subject><subject>Robustness</subject><subject>Satellites</subject><subject>spectral unmixing</subject><subject>unsupervised classification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAUh4MoOKd3wUsRxFO3l7ykTW-OMWdhU9im15Bm6ezo2pm0B_97OzYUPL3D-36_9_gIuaUwoBSS4Wq6WA4YQDxIQCBlZ6RHhZAhRJyfkx7QJAqZTNglufJ-C0C5oHGPPI3Lul2HS-OsrYpqE4zKTe2K5nMX5LULJq8f6XK0Gs4ni3QZzNuyKfzemsbpMkh3emP9NbnIdentzWn2yfvzZDV-CWdv03Q8moUGBWvCjEvM0QKjMs7QsIwbxrJEcEgYgwSk0NxwC4ZpqRlaainyHNF0OY6wxj55PPbuXf3VWt-oXeGNLUtd2br1SsYRYxhF2JH3_8ht3bqqe07JqLuHSHkHwREyrvbe2VztXbHT7ltRUAeh6iBUHYSqo9Au8nDq1d7oMne6MoX_yyUyZnEsOu7uyBXW2t81x1gKIfAHnQt7Dw</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Gomez-Chova, L.</creator><creator>Camps-Valls, G.</creator><creator>Calpe-Maravilla, J.</creator><creator>Guanter, L.</creator><creator>Moreno, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20071201</creationdate><title>Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images</title><author>Gomez-Chova, L. ; Camps-Valls, G. ; Calpe-Maravilla, J. ; Guanter, L. ; Moreno, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Absorption</topic><topic>Applied geophysics</topic><topic>Brightness</topic><topic>Classification algorithms</topic><topic>Cloud screening</topic><topic>Clouds</topic><topic>Data mining</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Instruments</topic><topic>Internal geophysics</topic><topic>Medium Resolution Imaging Spectrometer (MERIS)</topic><topic>MERIS</topic><topic>Meteorology</topic><topic>multispectral images</topic><topic>Multispectral imaging</topic><topic>Robustness</topic><topic>Satellites</topic><topic>spectral unmixing</topic><topic>unsupervised classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Chova, L.</creatorcontrib><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Calpe-Maravilla, J.</creatorcontrib><creatorcontrib>Guanter, L.</creatorcontrib><creatorcontrib>Moreno, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Chova, L.</au><au>Camps-Valls, G.</au><au>Calpe-Maravilla, J.</au><au>Guanter, L.</au><au>Moreno, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>45</volume><issue>12</issue><spage>4105</spage><epage>4118</epage><pages>4105-4118</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-1b data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and water-vapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-probability output is then combined with a spectral unmixing procedure to provide a cloud-abundance product instead of binary flags. The method is conceived to be robust and applicable to a broad range of actual situations with high variability of cloud types, presence of ground covers with bright and white spectra, and changing illumination conditions or observation geometry. The presented method has been shown to outperform the MERIS level-2 cloud flag in critical cloud-screening situations, such as over ice/snow covers and around cloud borders. The proposed modular methodology constitutes a general framework that can be applied to multispectral images acquired by spaceborne sensors working in the visible and near-infrared spectral range with proper spectral information to characterize atmospheric-oxygen and water-vapor absorptions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2007.905312</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2007-12, Vol.45 (12), p.4105-4118 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_4378555 |
source | IEEE Xplore (Online service) |
subjects | Absorption Applied geophysics Brightness Classification algorithms Cloud screening Clouds Data mining Earth sciences Earth, ocean, space Exact sciences and technology Instruments Internal geophysics Medium Resolution Imaging Spectrometer (MERIS) MERIS Meteorology multispectral images Multispectral imaging Robustness Satellites spectral unmixing unsupervised classification |
title | Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud-Screening%20Algorithm%20for%20ENVISAT/MERIS%20Multispectral%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Gomez-Chova,%20L.&rft.date=2007-12-01&rft.volume=45&rft.issue=12&rft.spage=4105&rft.epage=4118&rft.pages=4105-4118&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2007.905312&rft_dat=%3Cproquest_ieee_%3E2333765621%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-b483f3e02187b3c2b4c22b954092209085a4c4e0c2a8a23e1e134f33c483430d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864093314&rft_id=info:pmid/&rft_ieee_id=4378555&rfr_iscdi=true |