Loading…

Large Scale Learning of Active Shape Models

We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head...

Full description

Saved in:
Bibliographic Details
Main Authors: Kanaujia, A., Metaxas, D.N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page I - 268
container_issue
container_start_page I - 265
container_title
container_volume 1
creator Kanaujia, A.
Metaxas, D.N.
description We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head rotation cannot be accurately modeled using ASM. Moreover overly general image descriptor causes the cost function to have multiple local minima which in turn degrades the quality of shape registration. We propose to use multiple overlapping subspaces with more discriminative local image descriptors to capture larger variance occurring in the data set. We also apply techniques to learn distance metric for enhancing similarity of descriptors belonging to the same class of shape subspace. Our generic algorithm can be applied to large scale shape analysis and registration.
doi_str_mv 10.1109/ICIP.2007.4378942
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4378942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4378942</ieee_id><sourcerecordid>4378942</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-98ec5675d38dbd5ee8e76c380e3285cd2c4ea998110790f845911989538f3ef53</originalsourceid><addsrcrecordid>eNpVj8tKxEAQRdsXGMZ8gLjJXhKr-pGuWg7BRyCioK6HtlMZI3FmSAbBvzfgbFxduAcOHKUuEQpE4Ju6qp8LDeALazyx1UcqZU9otbU4X-WxSrQhzMlZPvnHSj5VCTqtc0sE5yqdpk8AQF_OFBJ13YRxLdlLDINkjYRx02_W2bbLlnHff8_gI-wke9y2MkwX6qwLwyTpYRfq7e72tXrIm6f7ulo2eY_e7XMmia70rjXUvrdOhMSX0RCI0eRiq6OVwExzmmfoyDpGZGJnqDPSObNQV3_eXkRWu7H_CuPP6pBufgHLlkVa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Large Scale Learning of Active Shape Models</title><source>IEEE Xplore All Conference Series</source><creator>Kanaujia, A. ; Metaxas, D.N.</creator><creatorcontrib>Kanaujia, A. ; Metaxas, D.N.</creatorcontrib><description>We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head rotation cannot be accurately modeled using ASM. Moreover overly general image descriptor causes the cost function to have multiple local minima which in turn degrades the quality of shape registration. We propose to use multiple overlapping subspaces with more discriminative local image descriptors to capture larger variance occurring in the data set. We also apply techniques to learn distance metric for enhancing similarity of descriptors belonging to the same class of shape subspace. Our generic algorithm can be applied to large scale shape analysis and registration.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424414369</identifier><identifier>ISBN: 1424414369</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424414376</identifier><identifier>EISBN: 1424414377</identifier><identifier>DOI: 10.1109/ICIP.2007.4378942</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active shape model ; Active Shape Models ; Anderson Darling Statistics ; Clustering algorithms ; Cost function ; Degradation ; Head ; Kernel ; Large-scale systems ; Nonlinear distortion ; Piecewise linear techniques ; Principal component analysis ; Relevance Component Analysis ; SIFT</subject><ispartof>2007 IEEE International Conference on Image Processing, 2007, Vol.1, p.I - 265-I - 268</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4378942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4378942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kanaujia, A.</creatorcontrib><creatorcontrib>Metaxas, D.N.</creatorcontrib><title>Large Scale Learning of Active Shape Models</title><title>2007 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head rotation cannot be accurately modeled using ASM. Moreover overly general image descriptor causes the cost function to have multiple local minima which in turn degrades the quality of shape registration. We propose to use multiple overlapping subspaces with more discriminative local image descriptors to capture larger variance occurring in the data set. We also apply techniques to learn distance metric for enhancing similarity of descriptors belonging to the same class of shape subspace. Our generic algorithm can be applied to large scale shape analysis and registration.</description><subject>Active shape model</subject><subject>Active Shape Models</subject><subject>Anderson Darling Statistics</subject><subject>Clustering algorithms</subject><subject>Cost function</subject><subject>Degradation</subject><subject>Head</subject><subject>Kernel</subject><subject>Large-scale systems</subject><subject>Nonlinear distortion</subject><subject>Piecewise linear techniques</subject><subject>Principal component analysis</subject><subject>Relevance Component Analysis</subject><subject>SIFT</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424414369</isbn><isbn>1424414369</isbn><isbn>9781424414376</isbn><isbn>1424414377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj8tKxEAQRdsXGMZ8gLjJXhKr-pGuWg7BRyCioK6HtlMZI3FmSAbBvzfgbFxduAcOHKUuEQpE4Ju6qp8LDeALazyx1UcqZU9otbU4X-WxSrQhzMlZPvnHSj5VCTqtc0sE5yqdpk8AQF_OFBJ13YRxLdlLDINkjYRx02_W2bbLlnHff8_gI-wke9y2MkwX6qwLwyTpYRfq7e72tXrIm6f7ulo2eY_e7XMmia70rjXUvrdOhMSX0RCI0eRiq6OVwExzmmfoyDpGZGJnqDPSObNQV3_eXkRWu7H_CuPP6pBufgHLlkVa</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Kanaujia, A.</creator><creator>Metaxas, D.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200709</creationdate><title>Large Scale Learning of Active Shape Models</title><author>Kanaujia, A. ; Metaxas, D.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-98ec5675d38dbd5ee8e76c380e3285cd2c4ea998110790f845911989538f3ef53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Active shape model</topic><topic>Active Shape Models</topic><topic>Anderson Darling Statistics</topic><topic>Clustering algorithms</topic><topic>Cost function</topic><topic>Degradation</topic><topic>Head</topic><topic>Kernel</topic><topic>Large-scale systems</topic><topic>Nonlinear distortion</topic><topic>Piecewise linear techniques</topic><topic>Principal component analysis</topic><topic>Relevance Component Analysis</topic><topic>SIFT</topic><toplevel>online_resources</toplevel><creatorcontrib>Kanaujia, A.</creatorcontrib><creatorcontrib>Metaxas, D.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kanaujia, A.</au><au>Metaxas, D.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Large Scale Learning of Active Shape Models</atitle><btitle>2007 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2007-09</date><risdate>2007</risdate><volume>1</volume><spage>I - 265</spage><epage>I - 268</epage><pages>I - 265-I - 268</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424414369</isbn><isbn>1424414369</isbn><eisbn>9781424414376</eisbn><eisbn>1424414377</eisbn><abstract>We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head rotation cannot be accurately modeled using ASM. Moreover overly general image descriptor causes the cost function to have multiple local minima which in turn degrades the quality of shape registration. We propose to use multiple overlapping subspaces with more discriminative local image descriptors to capture larger variance occurring in the data set. We also apply techniques to learn distance metric for enhancing similarity of descriptors belonging to the same class of shape subspace. Our generic algorithm can be applied to large scale shape analysis and registration.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2007.4378942</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2007 IEEE International Conference on Image Processing, 2007, Vol.1, p.I - 265-I - 268
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4378942
source IEEE Xplore All Conference Series
subjects Active shape model
Active Shape Models
Anderson Darling Statistics
Clustering algorithms
Cost function
Degradation
Head
Kernel
Large-scale systems
Nonlinear distortion
Piecewise linear techniques
Principal component analysis
Relevance Component Analysis
SIFT
title Large Scale Learning of Active Shape Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Large%20Scale%20Learning%20of%20Active%20Shape%20Models&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Kanaujia,%20A.&rft.date=2007-09&rft.volume=1&rft.spage=I%20-%20265&rft.epage=I%20-%20268&rft.pages=I%20-%20265-I%20-%20268&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424414369&rft.isbn_list=1424414369&rft_id=info:doi/10.1109/ICIP.2007.4378942&rft.eisbn=9781424414376&rft.eisbn_list=1424414377&rft_dat=%3Cieee_CHZPO%3E4378942%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-98ec5675d38dbd5ee8e76c380e3285cd2c4ea998110790f845911989538f3ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4378942&rfr_iscdi=true