Loading…
Large Scale Learning of Active Shape Models
We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | I - 268 |
container_issue | |
container_start_page | I - 265 |
container_title | |
container_volume | 1 |
creator | Kanaujia, A. Metaxas, D.N. |
description | We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head rotation cannot be accurately modeled using ASM. Moreover overly general image descriptor causes the cost function to have multiple local minima which in turn degrades the quality of shape registration. We propose to use multiple overlapping subspaces with more discriminative local image descriptors to capture larger variance occurring in the data set. We also apply techniques to learn distance metric for enhancing similarity of descriptors belonging to the same class of shape subspace. Our generic algorithm can be applied to large scale shape analysis and registration. |
doi_str_mv | 10.1109/ICIP.2007.4378942 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4378942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4378942</ieee_id><sourcerecordid>4378942</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-98ec5675d38dbd5ee8e76c380e3285cd2c4ea998110790f845911989538f3ef53</originalsourceid><addsrcrecordid>eNpVj8tKxEAQRdsXGMZ8gLjJXhKr-pGuWg7BRyCioK6HtlMZI3FmSAbBvzfgbFxduAcOHKUuEQpE4Ju6qp8LDeALazyx1UcqZU9otbU4X-WxSrQhzMlZPvnHSj5VCTqtc0sE5yqdpk8AQF_OFBJ13YRxLdlLDINkjYRx02_W2bbLlnHff8_gI-wke9y2MkwX6qwLwyTpYRfq7e72tXrIm6f7ulo2eY_e7XMmia70rjXUvrdOhMSX0RCI0eRiq6OVwExzmmfoyDpGZGJnqDPSObNQV3_eXkRWu7H_CuPP6pBufgHLlkVa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Large Scale Learning of Active Shape Models</title><source>IEEE Xplore All Conference Series</source><creator>Kanaujia, A. ; Metaxas, D.N.</creator><creatorcontrib>Kanaujia, A. ; Metaxas, D.N.</creatorcontrib><description>We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head rotation cannot be accurately modeled using ASM. Moreover overly general image descriptor causes the cost function to have multiple local minima which in turn degrades the quality of shape registration. We propose to use multiple overlapping subspaces with more discriminative local image descriptors to capture larger variance occurring in the data set. We also apply techniques to learn distance metric for enhancing similarity of descriptors belonging to the same class of shape subspace. Our generic algorithm can be applied to large scale shape analysis and registration.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424414369</identifier><identifier>ISBN: 1424414369</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424414376</identifier><identifier>EISBN: 1424414377</identifier><identifier>DOI: 10.1109/ICIP.2007.4378942</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active shape model ; Active Shape Models ; Anderson Darling Statistics ; Clustering algorithms ; Cost function ; Degradation ; Head ; Kernel ; Large-scale systems ; Nonlinear distortion ; Piecewise linear techniques ; Principal component analysis ; Relevance Component Analysis ; SIFT</subject><ispartof>2007 IEEE International Conference on Image Processing, 2007, Vol.1, p.I - 265-I - 268</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4378942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4378942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kanaujia, A.</creatorcontrib><creatorcontrib>Metaxas, D.N.</creatorcontrib><title>Large Scale Learning of Active Shape Models</title><title>2007 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head rotation cannot be accurately modeled using ASM. Moreover overly general image descriptor causes the cost function to have multiple local minima which in turn degrades the quality of shape registration. We propose to use multiple overlapping subspaces with more discriminative local image descriptors to capture larger variance occurring in the data set. We also apply techniques to learn distance metric for enhancing similarity of descriptors belonging to the same class of shape subspace. Our generic algorithm can be applied to large scale shape analysis and registration.</description><subject>Active shape model</subject><subject>Active Shape Models</subject><subject>Anderson Darling Statistics</subject><subject>Clustering algorithms</subject><subject>Cost function</subject><subject>Degradation</subject><subject>Head</subject><subject>Kernel</subject><subject>Large-scale systems</subject><subject>Nonlinear distortion</subject><subject>Piecewise linear techniques</subject><subject>Principal component analysis</subject><subject>Relevance Component Analysis</subject><subject>SIFT</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424414369</isbn><isbn>1424414369</isbn><isbn>9781424414376</isbn><isbn>1424414377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj8tKxEAQRdsXGMZ8gLjJXhKr-pGuWg7BRyCioK6HtlMZI3FmSAbBvzfgbFxduAcOHKUuEQpE4Ju6qp8LDeALazyx1UcqZU9otbU4X-WxSrQhzMlZPvnHSj5VCTqtc0sE5yqdpk8AQF_OFBJ13YRxLdlLDINkjYRx02_W2bbLlnHff8_gI-wke9y2MkwX6qwLwyTpYRfq7e72tXrIm6f7ulo2eY_e7XMmia70rjXUvrdOhMSX0RCI0eRiq6OVwExzmmfoyDpGZGJnqDPSObNQV3_eXkRWu7H_CuPP6pBufgHLlkVa</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Kanaujia, A.</creator><creator>Metaxas, D.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200709</creationdate><title>Large Scale Learning of Active Shape Models</title><author>Kanaujia, A. ; Metaxas, D.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-98ec5675d38dbd5ee8e76c380e3285cd2c4ea998110790f845911989538f3ef53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Active shape model</topic><topic>Active Shape Models</topic><topic>Anderson Darling Statistics</topic><topic>Clustering algorithms</topic><topic>Cost function</topic><topic>Degradation</topic><topic>Head</topic><topic>Kernel</topic><topic>Large-scale systems</topic><topic>Nonlinear distortion</topic><topic>Piecewise linear techniques</topic><topic>Principal component analysis</topic><topic>Relevance Component Analysis</topic><topic>SIFT</topic><toplevel>online_resources</toplevel><creatorcontrib>Kanaujia, A.</creatorcontrib><creatorcontrib>Metaxas, D.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kanaujia, A.</au><au>Metaxas, D.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Large Scale Learning of Active Shape Models</atitle><btitle>2007 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2007-09</date><risdate>2007</risdate><volume>1</volume><spage>I - 265</spage><epage>I - 268</epage><pages>I - 265-I - 268</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424414369</isbn><isbn>1424414369</isbn><eisbn>9781424414376</eisbn><eisbn>1424414377</eisbn><abstract>We propose a framework to learn statistical shape models for faces as piecewise linear models. Specifically, our methodology builds upon primitive active shape models(ASM) to handle large scale variation in shapes and appearances of faces. Non-linearities in shape manifold arising due to large head rotation cannot be accurately modeled using ASM. Moreover overly general image descriptor causes the cost function to have multiple local minima which in turn degrades the quality of shape registration. We propose to use multiple overlapping subspaces with more discriminative local image descriptors to capture larger variance occurring in the data set. We also apply techniques to learn distance metric for enhancing similarity of descriptors belonging to the same class of shape subspace. Our generic algorithm can be applied to large scale shape analysis and registration.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2007.4378942</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2007 IEEE International Conference on Image Processing, 2007, Vol.1, p.I - 265-I - 268 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_4378942 |
source | IEEE Xplore All Conference Series |
subjects | Active shape model Active Shape Models Anderson Darling Statistics Clustering algorithms Cost function Degradation Head Kernel Large-scale systems Nonlinear distortion Piecewise linear techniques Principal component analysis Relevance Component Analysis SIFT |
title | Large Scale Learning of Active Shape Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Large%20Scale%20Learning%20of%20Active%20Shape%20Models&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Kanaujia,%20A.&rft.date=2007-09&rft.volume=1&rft.spage=I%20-%20265&rft.epage=I%20-%20268&rft.pages=I%20-%20265-I%20-%20268&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424414369&rft.isbn_list=1424414369&rft_id=info:doi/10.1109/ICIP.2007.4378942&rft.eisbn=9781424414376&rft.eisbn_list=1424414377&rft_dat=%3Cieee_CHZPO%3E4378942%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-98ec5675d38dbd5ee8e76c380e3285cd2c4ea998110790f845911989538f3ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4378942&rfr_iscdi=true |