Loading…

Fabrication and characterization of GaAs/AlGaAs planar resonant tunneling transistor

We have demonstrated electron transport in enhancement mode in-plane-gate (IPG) quantum dot (QD) transistors. A deep etched trench allows a large positive bias on the IPG, with negligible leakage current. Such enhancement mode operation has made it possible to populate ultra-small QDs with electrons...

Full description

Saved in:
Bibliographic Details
Main Authors: SeungHun Son, JungIl Lee, YongJu Park, YunSeop Yu, SungWoo Hwang, Doyal Ahn
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 119
container_issue
container_start_page 118
container_title
container_volume 1
creator SeungHun Son
JungIl Lee
YongJu Park
YunSeop Yu
SungWoo Hwang
Doyal Ahn
description We have demonstrated electron transport in enhancement mode in-plane-gate (IPG) quantum dot (QD) transistors. A deep etched trench allows a large positive bias on the IPG, with negligible leakage current. Such enhancement mode operation has made it possible to populate ultra-small QDs with electrons. Strong NDR peaks and SET are observed in a wide gate bias window. The position of the NDR peaks systematically moves with the change of gate bias until, and also after the SET regime is reached. The size of the QD is estimated from the SET data, giving quantum energy level spacing consistent with the evolved NDR positions.
doi_str_mv 10.1109/NMDC.2006.4388712
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4388712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4388712</ieee_id><sourcerecordid>4388712</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a77d8e56318a75647a7e79586a26af5fc0a81ed901228489d47b200367bee46d3</originalsourceid><addsrcrecordid>eNo1UM1OwzAYC0KTYKMPgLjkBdbl_-dYFTaQBlzGefraphBU0ikJB3h6Om34YtmyLNkI3VJSUkrs6uX5vi4ZIaoU3BhN2QWaU8GEIFJQdYkKq82_JmKG5ses5YQwfYWKlD7JBG7VZF6j3Rqa6FvIfgwYQofbD4jQZhf978kce7yBKq2q4Uj4MECAiKNLY4CQcf4OwQ0-vOMcISSf8hhv0KyHIbnizAv0tn7Y1Y_L7evmqa62S0-1zEvQujNOKk4NaKmEBu20lUYBU9DLviVgqOssoYwZYWwndDNt4Uo3zgnV8QW6O_V659z-EP0XxJ_9-RX-B0OyU3A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fabrication and characterization of GaAs/AlGaAs planar resonant tunneling transistor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>SeungHun Son ; JungIl Lee ; YongJu Park ; YunSeop Yu ; SungWoo Hwang ; Doyal Ahn</creator><creatorcontrib>SeungHun Son ; JungIl Lee ; YongJu Park ; YunSeop Yu ; SungWoo Hwang ; Doyal Ahn</creatorcontrib><description>We have demonstrated electron transport in enhancement mode in-plane-gate (IPG) quantum dot (QD) transistors. A deep etched trench allows a large positive bias on the IPG, with negligible leakage current. Such enhancement mode operation has made it possible to populate ultra-small QDs with electrons. Strong NDR peaks and SET are observed in a wide gate bias window. The position of the NDR peaks systematically moves with the change of gate bias until, and also after the SET regime is reached. The size of the QD is estimated from the SET data, giving quantum energy level spacing consistent with the evolved NDR positions.</description><identifier>ISBN: 9781424405404</identifier><identifier>ISBN: 1424405408</identifier><identifier>EISBN: 1424405416</identifier><identifier>EISBN: 9781424405411</identifier><identifier>DOI: 10.1109/NMDC.2006.4388712</identifier><identifier>LCCN: 2006930027</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitance ; Electrons ; Energy states ; Etching ; Fabrication ; Gallium arsenide ; In-plane-gate ; Quantum computing ; Quantum dots ; resonant tunneling ; Resonant tunneling devices ; SET ; Transistors</subject><ispartof>2006 IEEE Nanotechnology Materials and Devices Conference, 2006, Vol.1, p.118-119</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4388712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4388712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>SeungHun Son</creatorcontrib><creatorcontrib>JungIl Lee</creatorcontrib><creatorcontrib>YongJu Park</creatorcontrib><creatorcontrib>YunSeop Yu</creatorcontrib><creatorcontrib>SungWoo Hwang</creatorcontrib><creatorcontrib>Doyal Ahn</creatorcontrib><title>Fabrication and characterization of GaAs/AlGaAs planar resonant tunneling transistor</title><title>2006 IEEE Nanotechnology Materials and Devices Conference</title><addtitle>NMDC</addtitle><description>We have demonstrated electron transport in enhancement mode in-plane-gate (IPG) quantum dot (QD) transistors. A deep etched trench allows a large positive bias on the IPG, with negligible leakage current. Such enhancement mode operation has made it possible to populate ultra-small QDs with electrons. Strong NDR peaks and SET are observed in a wide gate bias window. The position of the NDR peaks systematically moves with the change of gate bias until, and also after the SET regime is reached. The size of the QD is estimated from the SET data, giving quantum energy level spacing consistent with the evolved NDR positions.</description><subject>Capacitance</subject><subject>Electrons</subject><subject>Energy states</subject><subject>Etching</subject><subject>Fabrication</subject><subject>Gallium arsenide</subject><subject>In-plane-gate</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>resonant tunneling</subject><subject>Resonant tunneling devices</subject><subject>SET</subject><subject>Transistors</subject><isbn>9781424405404</isbn><isbn>1424405408</isbn><isbn>1424405416</isbn><isbn>9781424405411</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UM1OwzAYC0KTYKMPgLjkBdbl_-dYFTaQBlzGefraphBU0ikJB3h6Om34YtmyLNkI3VJSUkrs6uX5vi4ZIaoU3BhN2QWaU8GEIFJQdYkKq82_JmKG5ses5YQwfYWKlD7JBG7VZF6j3Rqa6FvIfgwYQofbD4jQZhf978kce7yBKq2q4Uj4MECAiKNLY4CQcf4OwQ0-vOMcISSf8hhv0KyHIbnizAv0tn7Y1Y_L7evmqa62S0-1zEvQujNOKk4NaKmEBu20lUYBU9DLviVgqOssoYwZYWwndDNt4Uo3zgnV8QW6O_V659z-EP0XxJ_9-RX-B0OyU3A</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>SeungHun Son</creator><creator>JungIl Lee</creator><creator>YongJu Park</creator><creator>YunSeop Yu</creator><creator>SungWoo Hwang</creator><creator>Doyal Ahn</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Fabrication and characterization of GaAs/AlGaAs planar resonant tunneling transistor</title><author>SeungHun Son ; JungIl Lee ; YongJu Park ; YunSeop Yu ; SungWoo Hwang ; Doyal Ahn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a77d8e56318a75647a7e79586a26af5fc0a81ed901228489d47b200367bee46d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Capacitance</topic><topic>Electrons</topic><topic>Energy states</topic><topic>Etching</topic><topic>Fabrication</topic><topic>Gallium arsenide</topic><topic>In-plane-gate</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>resonant tunneling</topic><topic>Resonant tunneling devices</topic><topic>SET</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>SeungHun Son</creatorcontrib><creatorcontrib>JungIl Lee</creatorcontrib><creatorcontrib>YongJu Park</creatorcontrib><creatorcontrib>YunSeop Yu</creatorcontrib><creatorcontrib>SungWoo Hwang</creatorcontrib><creatorcontrib>Doyal Ahn</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SeungHun Son</au><au>JungIl Lee</au><au>YongJu Park</au><au>YunSeop Yu</au><au>SungWoo Hwang</au><au>Doyal Ahn</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fabrication and characterization of GaAs/AlGaAs planar resonant tunneling transistor</atitle><btitle>2006 IEEE Nanotechnology Materials and Devices Conference</btitle><stitle>NMDC</stitle><date>2006-10</date><risdate>2006</risdate><volume>1</volume><spage>118</spage><epage>119</epage><pages>118-119</pages><isbn>9781424405404</isbn><isbn>1424405408</isbn><eisbn>1424405416</eisbn><eisbn>9781424405411</eisbn><abstract>We have demonstrated electron transport in enhancement mode in-plane-gate (IPG) quantum dot (QD) transistors. A deep etched trench allows a large positive bias on the IPG, with negligible leakage current. Such enhancement mode operation has made it possible to populate ultra-small QDs with electrons. Strong NDR peaks and SET are observed in a wide gate bias window. The position of the NDR peaks systematically moves with the change of gate bias until, and also after the SET regime is reached. The size of the QD is estimated from the SET data, giving quantum energy level spacing consistent with the evolved NDR positions.</abstract><pub>IEEE</pub><doi>10.1109/NMDC.2006.4388712</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424405404
ispartof 2006 IEEE Nanotechnology Materials and Devices Conference, 2006, Vol.1, p.118-119
issn
language eng
recordid cdi_ieee_primary_4388712
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Capacitance
Electrons
Energy states
Etching
Fabrication
Gallium arsenide
In-plane-gate
Quantum computing
Quantum dots
resonant tunneling
Resonant tunneling devices
SET
Transistors
title Fabrication and characterization of GaAs/AlGaAs planar resonant tunneling transistor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fabrication%20and%20characterization%20of%20GaAs/AlGaAs%20planar%20resonant%20tunneling%20transistor&rft.btitle=2006%20IEEE%20Nanotechnology%20Materials%20and%20Devices%20Conference&rft.au=SeungHun%20Son&rft.date=2006-10&rft.volume=1&rft.spage=118&rft.epage=119&rft.pages=118-119&rft.isbn=9781424405404&rft.isbn_list=1424405408&rft_id=info:doi/10.1109/NMDC.2006.4388712&rft.eisbn=1424405416&rft.eisbn_list=9781424405411&rft_dat=%3Cieee_6IE%3E4388712%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a77d8e56318a75647a7e79586a26af5fc0a81ed901228489d47b200367bee46d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4388712&rfr_iscdi=true