Loading…

Probabilistic Linear Discriminant Analysis for Inferences About Identity

Many current face recognition algorithms perform badly when the lighting or pose of the probe and gallery images differ. In this paper we present a novel algorithm designed for these conditions. We describe face data as resulting from a generative model which incorporates both within-individual and...

Full description

Saved in:
Bibliographic Details
Main Authors: Prince, S.J.D., Elder, J.H.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many current face recognition algorithms perform badly when the lighting or pose of the probe and gallery images differ. In this paper we present a novel algorithm designed for these conditions. We describe face data as resulting from a generative model which incorporates both within-individual and between-individual variation. In recognition we calculate the likelihood that the differences between face images are entirely due to within-individual variability. We extend this to the non-linear case where an arbitrary face manifold can be described and noise is position-dependent. We also develop a "tied" version of the algorithm that allows explicit comparison across quite different viewing conditions. We demonstrate that our model produces state of the art results for (i) frontal face recognition (ii) face recognition under varying pose.
ISSN:1550-5499
2380-7504
DOI:10.1109/ICCV.2007.4409052