Loading…
New Range and k-NN Query Processing Algorithms Using Materialization Technique on Spatial Network
In this paper, we propose new query processing algorithms for typical spatial queries in SNDB, such as range search and k nearest neighbors (k-NN) search. Our two query processing algorithms can reduce the computation time of network distance between a pair of nodes and the number of disk I/Os requi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 80 |
container_issue | |
container_start_page | 76 |
container_title | |
container_volume | |
creator | Jung-Ho Um Chowdhury, N.K. Jae-Woo Chang |
description | In this paper, we propose new query processing algorithms for typical spatial queries in SNDB, such as range search and k nearest neighbors (k-NN) search. Our two query processing algorithms can reduce the computation time of network distance between a pair of nodes and the number of disk I/Os required for accessing nodes by using a materialization-based technique with the shortest network distances of all the nodes in the spatial network. Thus, our query processing algorithms improve the existing efficient k-NN (INE) and range search (RNE) algorithms proposed by [1]. It is shown that our range query processing algorithm achieves about up to one of magnitude better performance than the RNE and our k- NN query processing algorithm achieves about up to 150% performance improvements over INE. |
doi_str_mv | 10.1109/ISITC.2007.22 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4410609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4410609</ieee_id><sourcerecordid>4410609</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-e237293ac128256e97f229f10409bbfe6492728b9cdbc45a6fe327057bb8eafd3</originalsourceid><addsrcrecordid>eNpNjM1OwkAURscYExVZunIzL1C8c6fT6SxJo9IE6w9lTablFkZKi9MSgk8vURd-m5NzFh9jtwJGQoC5T2dpnowQQI8Qz9g16MgoCaES5__lkg277gNOk0Yh4BWzGR34u21WxG2z5Jsgy_jbnvyRv_q2pK5zzYqP61XrXb_ednz-E55tT97Z2n3Z3rUNz6lcN-5zT_wks90p2ppn1B9av7lhF5WtOxr-ccDmjw95MgmmL09pMp4GToDqA0Kp0UhbCoxRRWR0hWgqASGYoqgoCg1qjAtTLosyVDaqSKIGpYsiJlst5YDd_f46IlrsvNtaf1yEoYAIjPwGnjJUuA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>New Range and k-NN Query Processing Algorithms Using Materialization Technique on Spatial Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jung-Ho Um ; Chowdhury, N.K. ; Jae-Woo Chang</creator><creatorcontrib>Jung-Ho Um ; Chowdhury, N.K. ; Jae-Woo Chang</creatorcontrib><description>In this paper, we propose new query processing algorithms for typical spatial queries in SNDB, such as range search and k nearest neighbors (k-NN) search. Our two query processing algorithms can reduce the computation time of network distance between a pair of nodes and the number of disk I/Os required for accessing nodes by using a materialization-based technique with the shortest network distances of all the nodes in the spatial network. Thus, our query processing algorithms improve the existing efficient k-NN (INE) and range search (RNE) algorithms proposed by [1]. It is shown that our range query processing algorithm achieves about up to one of magnitude better performance than the RNE and our k- NN query processing algorithm achieves about up to 150% performance improvements over INE.</description><identifier>ISBN: 0769530451</identifier><identifier>ISBN: 9780769530451</identifier><identifier>EISBN: 0769530451</identifier><identifier>EISBN: 9780769530451</identifier><identifier>DOI: 10.1109/ISITC.2007.22</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Data models ; Information technology ; Joining processes ; Nearest neighbor searches ; Partitioning algorithms ; Query processing ; Roads ; Space stations ; Spatial databases</subject><ispartof>2007 International Symposium on Information Technology Convergence (ISITC 2007), 2007, p.76-80</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4410609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4410609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jung-Ho Um</creatorcontrib><creatorcontrib>Chowdhury, N.K.</creatorcontrib><creatorcontrib>Jae-Woo Chang</creatorcontrib><title>New Range and k-NN Query Processing Algorithms Using Materialization Technique on Spatial Network</title><title>2007 International Symposium on Information Technology Convergence (ISITC 2007)</title><addtitle>ISITC</addtitle><description>In this paper, we propose new query processing algorithms for typical spatial queries in SNDB, such as range search and k nearest neighbors (k-NN) search. Our two query processing algorithms can reduce the computation time of network distance between a pair of nodes and the number of disk I/Os required for accessing nodes by using a materialization-based technique with the shortest network distances of all the nodes in the spatial network. Thus, our query processing algorithms improve the existing efficient k-NN (INE) and range search (RNE) algorithms proposed by [1]. It is shown that our range query processing algorithm achieves about up to one of magnitude better performance than the RNE and our k- NN query processing algorithm achieves about up to 150% performance improvements over INE.</description><subject>Computer networks</subject><subject>Data models</subject><subject>Information technology</subject><subject>Joining processes</subject><subject>Nearest neighbor searches</subject><subject>Partitioning algorithms</subject><subject>Query processing</subject><subject>Roads</subject><subject>Space stations</subject><subject>Spatial databases</subject><isbn>0769530451</isbn><isbn>9780769530451</isbn><isbn>0769530451</isbn><isbn>9780769530451</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjM1OwkAURscYExVZunIzL1C8c6fT6SxJo9IE6w9lTablFkZKi9MSgk8vURd-m5NzFh9jtwJGQoC5T2dpnowQQI8Qz9g16MgoCaES5__lkg277gNOk0Yh4BWzGR34u21WxG2z5Jsgy_jbnvyRv_q2pK5zzYqP61XrXb_ednz-E55tT97Z2n3Z3rUNz6lcN-5zT_wks90p2ppn1B9av7lhF5WtOxr-ccDmjw95MgmmL09pMp4GToDqA0Kp0UhbCoxRRWR0hWgqASGYoqgoCg1qjAtTLosyVDaqSKIGpYsiJlst5YDd_f46IlrsvNtaf1yEoYAIjPwGnjJUuA</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Jung-Ho Um</creator><creator>Chowdhury, N.K.</creator><creator>Jae-Woo Chang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>New Range and k-NN Query Processing Algorithms Using Materialization Technique on Spatial Network</title><author>Jung-Ho Um ; Chowdhury, N.K. ; Jae-Woo Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-e237293ac128256e97f229f10409bbfe6492728b9cdbc45a6fe327057bb8eafd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer networks</topic><topic>Data models</topic><topic>Information technology</topic><topic>Joining processes</topic><topic>Nearest neighbor searches</topic><topic>Partitioning algorithms</topic><topic>Query processing</topic><topic>Roads</topic><topic>Space stations</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Jung-Ho Um</creatorcontrib><creatorcontrib>Chowdhury, N.K.</creatorcontrib><creatorcontrib>Jae-Woo Chang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jung-Ho Um</au><au>Chowdhury, N.K.</au><au>Jae-Woo Chang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New Range and k-NN Query Processing Algorithms Using Materialization Technique on Spatial Network</atitle><btitle>2007 International Symposium on Information Technology Convergence (ISITC 2007)</btitle><stitle>ISITC</stitle><date>2007-11</date><risdate>2007</risdate><spage>76</spage><epage>80</epage><pages>76-80</pages><isbn>0769530451</isbn><isbn>9780769530451</isbn><eisbn>0769530451</eisbn><eisbn>9780769530451</eisbn><abstract>In this paper, we propose new query processing algorithms for typical spatial queries in SNDB, such as range search and k nearest neighbors (k-NN) search. Our two query processing algorithms can reduce the computation time of network distance between a pair of nodes and the number of disk I/Os required for accessing nodes by using a materialization-based technique with the shortest network distances of all the nodes in the spatial network. Thus, our query processing algorithms improve the existing efficient k-NN (INE) and range search (RNE) algorithms proposed by [1]. It is shown that our range query processing algorithm achieves about up to one of magnitude better performance than the RNE and our k- NN query processing algorithm achieves about up to 150% performance improvements over INE.</abstract><pub>IEEE</pub><doi>10.1109/ISITC.2007.22</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769530451 |
ispartof | 2007 International Symposium on Information Technology Convergence (ISITC 2007), 2007, p.76-80 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4410609 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer networks Data models Information technology Joining processes Nearest neighbor searches Partitioning algorithms Query processing Roads Space stations Spatial databases |
title | New Range and k-NN Query Processing Algorithms Using Materialization Technique on Spatial Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20Range%20and%20k-NN%20Query%20Processing%20Algorithms%20Using%20Materialization%20Technique%20on%20Spatial%20Network&rft.btitle=2007%20International%20Symposium%20on%20Information%20Technology%20Convergence%20(ISITC%202007)&rft.au=Jung-Ho%20Um&rft.date=2007-11&rft.spage=76&rft.epage=80&rft.pages=76-80&rft.isbn=0769530451&rft.isbn_list=9780769530451&rft_id=info:doi/10.1109/ISITC.2007.22&rft.eisbn=0769530451&rft.eisbn_list=9780769530451&rft_dat=%3Cieee_6IE%3E4410609%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-e237293ac128256e97f229f10409bbfe6492728b9cdbc45a6fe327057bb8eafd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4410609&rfr_iscdi=true |