Loading…
Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images
Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 528 |
container_issue | |
container_start_page | 525 |
container_title | |
container_volume | |
creator | Heng-Chao Li Wen Hong Yi-Rong Wu |
description | Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this paper, we propose a new empirical statistical model, called generalized Gamma distribution (GGammaD), for the statistical modeling of SAR images. The GGammaD forms a large variety of alternative distributions, and is flexible to model the SAR images covering different kinds of surfaces in amplitude and intensity formats. Moreover, the method of log-cumulants (MoLC) based on Mellin transform is derived for parameter estimation of GGammaD.Experimental results on two real SAR images are given to demonstrate the validity of our proposed GGammaD. |
doi_str_mv | 10.1109/APSAR.2007.4418665 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4418665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4418665</ieee_id><sourcerecordid>4418665</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-96890fad1e02bc6865aff0944bfdae478da0de06dc0aa76432507c3e179b74793</originalsourceid><addsrcrecordid>eNpVUMtKxTAUjIigXPsDuskPtJ60aR7LUvQqVBQfGzeXtDmpkT6kqYh-vUHvxrM5Z4ZhzjCEnDHIGAN9Ud0_Vg9ZDiAzzpkSojwgiZaK8TxippQ8_IclHJMkhDeIU2hRSHVCXrY44WIG_42W9mYcDbU-rItvP1Y_T_TTr6_0dm5qimH1o_kl3bzQsMY7Up0Z6DhbHPzU09nRGIlGXY_hlBw5MwRM9ntDnq8un-rrtLnb3tRVk3omyzXVQmlwxjKEvO2EEqVxDjTnrbMGuVTWgEUQtgNjpOBFXoLsCmRSt5JLXWzI-Z-vR8Td-xK_L1-7fSPFD4NiVTs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Heng-Chao Li ; Wen Hong ; Yi-Rong Wu</creator><creatorcontrib>Heng-Chao Li ; Wen Hong ; Yi-Rong Wu</creatorcontrib><description>Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this paper, we propose a new empirical statistical model, called generalized Gamma distribution (GGammaD), for the statistical modeling of SAR images. The GGammaD forms a large variety of alternative distributions, and is flexible to model the SAR images covering different kinds of surfaces in amplitude and intensity formats. Moreover, the method of log-cumulants (MoLC) based on Mellin transform is derived for parameter estimation of GGammaD.Experimental results on two real SAR images are given to demonstrate the validity of our proposed GGammaD.</description><identifier>ISBN: 9781424411870</identifier><identifier>ISBN: 1424411874</identifier><identifier>EISBN: 9781424411887</identifier><identifier>EISBN: 1424411882</identifier><identifier>DOI: 10.1109/APSAR.2007.4418665</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplitude estimation ; Image analysis ; Laboratories ; Layout ; Nakagami distribution ; Parameter estimation ; Probability density function ; Radar scattering ; Rayleigh scattering ; Statistical distributions</subject><ispartof>2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007, p.525-528</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4418665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4418665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heng-Chao Li</creatorcontrib><creatorcontrib>Wen Hong</creatorcontrib><creatorcontrib>Yi-Rong Wu</creatorcontrib><title>Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images</title><title>2007 1st Asian and Pacific Conference on Synthetic Aperture Radar</title><addtitle>APSAR</addtitle><description>Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this paper, we propose a new empirical statistical model, called generalized Gamma distribution (GGammaD), for the statistical modeling of SAR images. The GGammaD forms a large variety of alternative distributions, and is flexible to model the SAR images covering different kinds of surfaces in amplitude and intensity formats. Moreover, the method of log-cumulants (MoLC) based on Mellin transform is derived for parameter estimation of GGammaD.Experimental results on two real SAR images are given to demonstrate the validity of our proposed GGammaD.</description><subject>Amplitude estimation</subject><subject>Image analysis</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Nakagami distribution</subject><subject>Parameter estimation</subject><subject>Probability density function</subject><subject>Radar scattering</subject><subject>Rayleigh scattering</subject><subject>Statistical distributions</subject><isbn>9781424411870</isbn><isbn>1424411874</isbn><isbn>9781424411887</isbn><isbn>1424411882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMtKxTAUjIigXPsDuskPtJ60aR7LUvQqVBQfGzeXtDmpkT6kqYh-vUHvxrM5Z4ZhzjCEnDHIGAN9Ud0_Vg9ZDiAzzpkSojwgiZaK8TxippQ8_IclHJMkhDeIU2hRSHVCXrY44WIG_42W9mYcDbU-rItvP1Y_T_TTr6_0dm5qimH1o_kl3bzQsMY7Up0Z6DhbHPzU09nRGIlGXY_hlBw5MwRM9ntDnq8un-rrtLnb3tRVk3omyzXVQmlwxjKEvO2EEqVxDjTnrbMGuVTWgEUQtgNjpOBFXoLsCmRSt5JLXWzI-Z-vR8Td-xK_L1-7fSPFD4NiVTs</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Heng-Chao Li</creator><creator>Wen Hong</creator><creator>Yi-Rong Wu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images</title><author>Heng-Chao Li ; Wen Hong ; Yi-Rong Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-96890fad1e02bc6865aff0944bfdae478da0de06dc0aa76432507c3e179b74793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amplitude estimation</topic><topic>Image analysis</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Nakagami distribution</topic><topic>Parameter estimation</topic><topic>Probability density function</topic><topic>Radar scattering</topic><topic>Rayleigh scattering</topic><topic>Statistical distributions</topic><toplevel>online_resources</toplevel><creatorcontrib>Heng-Chao Li</creatorcontrib><creatorcontrib>Wen Hong</creatorcontrib><creatorcontrib>Yi-Rong Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heng-Chao Li</au><au>Wen Hong</au><au>Yi-Rong Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images</atitle><btitle>2007 1st Asian and Pacific Conference on Synthetic Aperture Radar</btitle><stitle>APSAR</stitle><date>2007-11</date><risdate>2007</risdate><spage>525</spage><epage>528</epage><pages>525-528</pages><isbn>9781424411870</isbn><isbn>1424411874</isbn><eisbn>9781424411887</eisbn><eisbn>1424411882</eisbn><abstract>Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this paper, we propose a new empirical statistical model, called generalized Gamma distribution (GGammaD), for the statistical modeling of SAR images. The GGammaD forms a large variety of alternative distributions, and is flexible to model the SAR images covering different kinds of surfaces in amplitude and intensity formats. Moreover, the method of log-cumulants (MoLC) based on Mellin transform is derived for parameter estimation of GGammaD.Experimental results on two real SAR images are given to demonstrate the validity of our proposed GGammaD.</abstract><pub>IEEE</pub><doi>10.1109/APSAR.2007.4418665</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424411870 |
ispartof | 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007, p.525-528 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4418665 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Amplitude estimation Image analysis Laboratories Layout Nakagami distribution Parameter estimation Probability density function Radar scattering Rayleigh scattering Statistical distributions |
title | Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalized%20gamma%20distribution%20with%20MoLC%20estimation%20for%20statistical%20modeling%20of%20SAR%20images&rft.btitle=2007%201st%20Asian%20and%20Pacific%20Conference%20on%20Synthetic%20Aperture%20Radar&rft.au=Heng-Chao%20Li&rft.date=2007-11&rft.spage=525&rft.epage=528&rft.pages=525-528&rft.isbn=9781424411870&rft.isbn_list=1424411874&rft_id=info:doi/10.1109/APSAR.2007.4418665&rft.eisbn=9781424411887&rft.eisbn_list=1424411882&rft_dat=%3Cieee_6IE%3E4418665%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-96890fad1e02bc6865aff0944bfdae478da0de06dc0aa76432507c3e179b74793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4418665&rfr_iscdi=true |