Loading…

Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images

Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this...

Full description

Saved in:
Bibliographic Details
Main Authors: Heng-Chao Li, Wen Hong, Yi-Rong Wu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 528
container_issue
container_start_page 525
container_title
container_volume
creator Heng-Chao Li
Wen Hong
Yi-Rong Wu
description Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this paper, we propose a new empirical statistical model, called generalized Gamma distribution (GGammaD), for the statistical modeling of SAR images. The GGammaD forms a large variety of alternative distributions, and is flexible to model the SAR images covering different kinds of surfaces in amplitude and intensity formats. Moreover, the method of log-cumulants (MoLC) based on Mellin transform is derived for parameter estimation of GGammaD.Experimental results on two real SAR images are given to demonstrate the validity of our proposed GGammaD.
doi_str_mv 10.1109/APSAR.2007.4418665
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4418665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4418665</ieee_id><sourcerecordid>4418665</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-96890fad1e02bc6865aff0944bfdae478da0de06dc0aa76432507c3e179b74793</originalsourceid><addsrcrecordid>eNpVUMtKxTAUjIigXPsDuskPtJ60aR7LUvQqVBQfGzeXtDmpkT6kqYh-vUHvxrM5Z4ZhzjCEnDHIGAN9Ud0_Vg9ZDiAzzpkSojwgiZaK8TxippQ8_IclHJMkhDeIU2hRSHVCXrY44WIG_42W9mYcDbU-rItvP1Y_T_TTr6_0dm5qimH1o_kl3bzQsMY7Up0Z6DhbHPzU09nRGIlGXY_hlBw5MwRM9ntDnq8un-rrtLnb3tRVk3omyzXVQmlwxjKEvO2EEqVxDjTnrbMGuVTWgEUQtgNjpOBFXoLsCmRSt5JLXWzI-Z-vR8Td-xK_L1-7fSPFD4NiVTs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Heng-Chao Li ; Wen Hong ; Yi-Rong Wu</creator><creatorcontrib>Heng-Chao Li ; Wen Hong ; Yi-Rong Wu</creatorcontrib><description>Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this paper, we propose a new empirical statistical model, called generalized Gamma distribution (GGammaD), for the statistical modeling of SAR images. The GGammaD forms a large variety of alternative distributions, and is flexible to model the SAR images covering different kinds of surfaces in amplitude and intensity formats. Moreover, the method of log-cumulants (MoLC) based on Mellin transform is derived for parameter estimation of GGammaD.Experimental results on two real SAR images are given to demonstrate the validity of our proposed GGammaD.</description><identifier>ISBN: 9781424411870</identifier><identifier>ISBN: 1424411874</identifier><identifier>EISBN: 9781424411887</identifier><identifier>EISBN: 1424411882</identifier><identifier>DOI: 10.1109/APSAR.2007.4418665</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplitude estimation ; Image analysis ; Laboratories ; Layout ; Nakagami distribution ; Parameter estimation ; Probability density function ; Radar scattering ; Rayleigh scattering ; Statistical distributions</subject><ispartof>2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007, p.525-528</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4418665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4418665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heng-Chao Li</creatorcontrib><creatorcontrib>Wen Hong</creatorcontrib><creatorcontrib>Yi-Rong Wu</creatorcontrib><title>Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images</title><title>2007 1st Asian and Pacific Conference on Synthetic Aperture Radar</title><addtitle>APSAR</addtitle><description>Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this paper, we propose a new empirical statistical model, called generalized Gamma distribution (GGammaD), for the statistical modeling of SAR images. The GGammaD forms a large variety of alternative distributions, and is flexible to model the SAR images covering different kinds of surfaces in amplitude and intensity formats. Moreover, the method of log-cumulants (MoLC) based on Mellin transform is derived for parameter estimation of GGammaD.Experimental results on two real SAR images are given to demonstrate the validity of our proposed GGammaD.</description><subject>Amplitude estimation</subject><subject>Image analysis</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Nakagami distribution</subject><subject>Parameter estimation</subject><subject>Probability density function</subject><subject>Radar scattering</subject><subject>Rayleigh scattering</subject><subject>Statistical distributions</subject><isbn>9781424411870</isbn><isbn>1424411874</isbn><isbn>9781424411887</isbn><isbn>1424411882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMtKxTAUjIigXPsDuskPtJ60aR7LUvQqVBQfGzeXtDmpkT6kqYh-vUHvxrM5Z4ZhzjCEnDHIGAN9Ud0_Vg9ZDiAzzpkSojwgiZaK8TxippQ8_IclHJMkhDeIU2hRSHVCXrY44WIG_42W9mYcDbU-rItvP1Y_T_TTr6_0dm5qimH1o_kl3bzQsMY7Up0Z6DhbHPzU09nRGIlGXY_hlBw5MwRM9ntDnq8un-rrtLnb3tRVk3omyzXVQmlwxjKEvO2EEqVxDjTnrbMGuVTWgEUQtgNjpOBFXoLsCmRSt5JLXWzI-Z-vR8Td-xK_L1-7fSPFD4NiVTs</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Heng-Chao Li</creator><creator>Wen Hong</creator><creator>Yi-Rong Wu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images</title><author>Heng-Chao Li ; Wen Hong ; Yi-Rong Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-96890fad1e02bc6865aff0944bfdae478da0de06dc0aa76432507c3e179b74793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amplitude estimation</topic><topic>Image analysis</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Nakagami distribution</topic><topic>Parameter estimation</topic><topic>Probability density function</topic><topic>Radar scattering</topic><topic>Rayleigh scattering</topic><topic>Statistical distributions</topic><toplevel>online_resources</toplevel><creatorcontrib>Heng-Chao Li</creatorcontrib><creatorcontrib>Wen Hong</creatorcontrib><creatorcontrib>Yi-Rong Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heng-Chao Li</au><au>Wen Hong</au><au>Yi-Rong Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images</atitle><btitle>2007 1st Asian and Pacific Conference on Synthetic Aperture Radar</btitle><stitle>APSAR</stitle><date>2007-11</date><risdate>2007</risdate><spage>525</spage><epage>528</epage><pages>525-528</pages><isbn>9781424411870</isbn><isbn>1424411874</isbn><eisbn>9781424411887</eisbn><eisbn>1424411882</eisbn><abstract>Although many theoretical and empirical models have been developed to characterize the statistics of SAR images in the literature, they are generally dedicated to the SAR images with certain types of scenes, or cannot provide analytical expression for the probability density function (PDF). In this paper, we propose a new empirical statistical model, called generalized Gamma distribution (GGammaD), for the statistical modeling of SAR images. The GGammaD forms a large variety of alternative distributions, and is flexible to model the SAR images covering different kinds of surfaces in amplitude and intensity formats. Moreover, the method of log-cumulants (MoLC) based on Mellin transform is derived for parameter estimation of GGammaD.Experimental results on two real SAR images are given to demonstrate the validity of our proposed GGammaD.</abstract><pub>IEEE</pub><doi>10.1109/APSAR.2007.4418665</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424411870
ispartof 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007, p.525-528
issn
language eng
recordid cdi_ieee_primary_4418665
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Amplitude estimation
Image analysis
Laboratories
Layout
Nakagami distribution
Parameter estimation
Probability density function
Radar scattering
Rayleigh scattering
Statistical distributions
title Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalized%20gamma%20distribution%20with%20MoLC%20estimation%20for%20statistical%20modeling%20of%20SAR%20images&rft.btitle=2007%201st%20Asian%20and%20Pacific%20Conference%20on%20Synthetic%20Aperture%20Radar&rft.au=Heng-Chao%20Li&rft.date=2007-11&rft.spage=525&rft.epage=528&rft.pages=525-528&rft.isbn=9781424411870&rft.isbn_list=1424411874&rft_id=info:doi/10.1109/APSAR.2007.4418665&rft.eisbn=9781424411887&rft.eisbn_list=1424411882&rft_dat=%3Cieee_6IE%3E4418665%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-96890fad1e02bc6865aff0944bfdae478da0de06dc0aa76432507c3e179b74793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4418665&rfr_iscdi=true