Loading…
Evolving fuzzy classifiers using a symbiotic approach
Fuzzy rule-based classifiers are one of the famous forms of the classification systems particularly in the data mining field. Genetic algorithm is a useful technique for discovering this kind of classifiers and it has been used for this purpose in some studies. In this paper, we propose a new symbio...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fuzzy rule-based classifiers are one of the famous forms of the classification systems particularly in the data mining field. Genetic algorithm is a useful technique for discovering this kind of classifiers and it has been used for this purpose in some studies. In this paper, we propose a new symbiotic evolutionary approach to find desired fuzzy rule-based classifiers. For this purpose, a symbiotic combination operator has been designed as an alternative to the recombination operator (crossover) in the genetic algorithms. In the proposed approach, the evolution starts from simple chromosomes and the structure of chromosomes gets complex gradually during the evolutionary process. Experimental results on some standard data sets show the high performance of the proposed approach compared to the other existing approaches. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/CEC.2007.4424664 |