Loading…
An evolutionary computation approach to cognitive states classification
The study of human brain functions has dramatically increased in recent years greatly due to the advent of functional magnetic resonance imaging. This paper presents a genetic programming approach to the problem of classifying the instantaneous cognitive state of a person based on his/her functional...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1799 |
container_issue | |
container_start_page | 1793 |
container_title | |
container_volume | |
creator | Ramirez, R. Puiggros, M. |
description | The study of human brain functions has dramatically increased in recent years greatly due to the advent of functional magnetic resonance imaging. This paper presents a genetic programming approach to the problem of classifying the instantaneous cognitive state of a person based on his/her functional magnetic resonance imaging data. The problem provides a very interesting case study of training classifiers with extremely high dimensional, sparse and noisy data. We apply genetic programming for both feature selection and classifier training. We present a successful case study of induced classifiers which accurately discriminate between cognitive states produced by listening to different auditory stimuli. |
doi_str_mv | 10.1109/CEC.2007.4424690 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4424690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4424690</ieee_id><sourcerecordid>4424690</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c0c3607775d30a43315c8d9954838898a315caf2de395fe3af2070c8821ec9813</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxcM_iTF2R-KSL9Bi10mTHKdqDKRJXEDiNkVpCkFdWzXdJL49GUz44uf3s54sM3aHkCOCeahWVV4AqFyIQpQGztgNJiWQBMA5m6ERmAEU5cU_IKMuEwBtMqX0-zVbxPgFqYQUqMSMrZcd94e-3U-h7-z4zV2_G_aTPY7cDsPYW_fJpz75H12YwsHzmKiP3LU2xtAE97t7y64a20a_OPU5e3tcvVZP2eZl_VwtN1lAJafMgaMSlFKyJrCCCKXTtTFSaNLaaHs0bFPUnoxsPCUJCpzWBXpnNNKc3f_lBu_9dhjDLh29PT2EfgDiwU_1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An evolutionary computation approach to cognitive states classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ramirez, R. ; Puiggros, M.</creator><creatorcontrib>Ramirez, R. ; Puiggros, M.</creatorcontrib><description>The study of human brain functions has dramatically increased in recent years greatly due to the advent of functional magnetic resonance imaging. This paper presents a genetic programming approach to the problem of classifying the instantaneous cognitive state of a person based on his/her functional magnetic resonance imaging data. The problem provides a very interesting case study of training classifiers with extremely high dimensional, sparse and noisy data. We apply genetic programming for both feature selection and classifier training. We present a successful case study of induced classifiers which accurately discriminate between cognitive states produced by listening to different auditory stimuli.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424413397</identifier><identifier>ISBN: 9781424413393</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424413400</identifier><identifier>EISBN: 9781424413409</identifier><identifier>DOI: 10.1109/CEC.2007.4424690</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic testing ; Blood flow ; Brain ; Communications technology ; Evolutionary computation ; Genetic programming ; Humans ; Magnetic noise ; Magnetic resonance ; Magnetic resonance imaging</subject><ispartof>2007 IEEE Congress on Evolutionary Computation, 2007, p.1793-1799</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4424690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4424690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramirez, R.</creatorcontrib><creatorcontrib>Puiggros, M.</creatorcontrib><title>An evolutionary computation approach to cognitive states classification</title><title>2007 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>The study of human brain functions has dramatically increased in recent years greatly due to the advent of functional magnetic resonance imaging. This paper presents a genetic programming approach to the problem of classifying the instantaneous cognitive state of a person based on his/her functional magnetic resonance imaging data. The problem provides a very interesting case study of training classifiers with extremely high dimensional, sparse and noisy data. We apply genetic programming for both feature selection and classifier training. We present a successful case study of induced classifiers which accurately discriminate between cognitive states produced by listening to different auditory stimuli.</description><subject>Automatic testing</subject><subject>Blood flow</subject><subject>Brain</subject><subject>Communications technology</subject><subject>Evolutionary computation</subject><subject>Genetic programming</subject><subject>Humans</subject><subject>Magnetic noise</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424413397</isbn><isbn>9781424413393</isbn><isbn>1424413400</isbn><isbn>9781424413409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kE9PwzAMxcM_iTF2R-KSL9Bi10mTHKdqDKRJXEDiNkVpCkFdWzXdJL49GUz44uf3s54sM3aHkCOCeahWVV4AqFyIQpQGztgNJiWQBMA5m6ERmAEU5cU_IKMuEwBtMqX0-zVbxPgFqYQUqMSMrZcd94e-3U-h7-z4zV2_G_aTPY7cDsPYW_fJpz75H12YwsHzmKiP3LU2xtAE97t7y64a20a_OPU5e3tcvVZP2eZl_VwtN1lAJafMgaMSlFKyJrCCCKXTtTFSaNLaaHs0bFPUnoxsPCUJCpzWBXpnNNKc3f_lBu_9dhjDLh29PT2EfgDiwU_1</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Ramirez, R.</creator><creator>Puiggros, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200709</creationdate><title>An evolutionary computation approach to cognitive states classification</title><author>Ramirez, R. ; Puiggros, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c0c3607775d30a43315c8d9954838898a315caf2de395fe3af2070c8821ec9813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automatic testing</topic><topic>Blood flow</topic><topic>Brain</topic><topic>Communications technology</topic><topic>Evolutionary computation</topic><topic>Genetic programming</topic><topic>Humans</topic><topic>Magnetic noise</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez, R.</creatorcontrib><creatorcontrib>Puiggros, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramirez, R.</au><au>Puiggros, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An evolutionary computation approach to cognitive states classification</atitle><btitle>2007 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2007-09</date><risdate>2007</risdate><spage>1793</spage><epage>1799</epage><pages>1793-1799</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424413397</isbn><isbn>9781424413393</isbn><eisbn>1424413400</eisbn><eisbn>9781424413409</eisbn><abstract>The study of human brain functions has dramatically increased in recent years greatly due to the advent of functional magnetic resonance imaging. This paper presents a genetic programming approach to the problem of classifying the instantaneous cognitive state of a person based on his/her functional magnetic resonance imaging data. The problem provides a very interesting case study of training classifiers with extremely high dimensional, sparse and noisy data. We apply genetic programming for both feature selection and classifier training. We present a successful case study of induced classifiers which accurately discriminate between cognitive states produced by listening to different auditory stimuli.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2007.4424690</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2007 IEEE Congress on Evolutionary Computation, 2007, p.1793-1799 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_4424690 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic testing Blood flow Brain Communications technology Evolutionary computation Genetic programming Humans Magnetic noise Magnetic resonance Magnetic resonance imaging |
title | An evolutionary computation approach to cognitive states classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20evolutionary%20computation%20approach%20to%20cognitive%20states%20classification&rft.btitle=2007%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Ramirez,%20R.&rft.date=2007-09&rft.spage=1793&rft.epage=1799&rft.pages=1793-1799&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424413397&rft.isbn_list=9781424413393&rft_id=info:doi/10.1109/CEC.2007.4424690&rft.eisbn=1424413400&rft.eisbn_list=9781424413409&rft_dat=%3Cieee_6IE%3E4424690%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c0c3607775d30a43315c8d9954838898a315caf2de395fe3af2070c8821ec9813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4424690&rfr_iscdi=true |