Loading…

Detection and Quantification of Tungsten Inclusion in Weld Thermographs for On-line Weld Monitoring by Region Growing and Morphological Image Processing Algorithms

Tungsten inert gas welding is the best suited welding technique for precision welding in atomic and aircraft industries. The most commonly occurring weld defect is tungsten inclusion, which is mainly due to high welding current. Monitoring and controlling weld current can avoid the defect. Developin...

Full description

Saved in:
Bibliographic Details
Main Authors: Nandhitha, N.M., Manoharan, N., Rani, B.S., Venkataraman, B., Sundaram, P.K., Raj, B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 518
container_issue
container_start_page 513
container_title
container_volume 3
creator Nandhitha, N.M.
Manoharan, N.
Rani, B.S.
Venkataraman, B.
Sundaram, P.K.
Raj, B.
description Tungsten inert gas welding is the best suited welding technique for precision welding in atomic and aircraft industries. The most commonly occurring weld defect is tungsten inclusion, which is mainly due to high welding current. Monitoring and controlling weld current can avoid the defect. Developing an automated on-line welding system to correct the deviation in the welding current requires an effective image-processing algorithm to extract defect features from the sensor output image. Infrared thermography is the best-suited sensor for on-line weld monitoring. Conventional feature extraction algorithms are parameter dependent, image dependent and time consuming thereby making it unsuitable for on-line monitoring. This paper proposes region growing and morphological image processing algorithm to identify and quantify the weld defect from thermographs. Defect is quantified by major axis length, minor axis length and area. It takes 0.406 seconds in contrast to 3.484 seconds of the conventional algorithm in a Pentium IV system with a processor speed of 2.64 GHZ system.
doi_str_mv 10.1109/ICCIMA.2007.131
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4426420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4426420</ieee_id><sourcerecordid>4426420</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-3a726bb9a9e24247573e321a2bccdbc1e0fc0e47a7c6181990a81bb3640699df3</originalsourceid><addsrcrecordid>eNotjc1OwzAQhC0hJKD0zIGLXyDFf4nrYxWgRGpVQEUcK8fZJEaJXdmpUJ-HF6Wh7GWkb2Z2ELqjZEYpUQ9FnhfrxYwRImeU0wt0Q2SmUk5SMr9C0xi_yOlESlUmr9HPIwxgBusd1q7CbwftBltbo_-Qr_H24Jo4gMOFM90hjtQ6_AldhbcthN43Qe_biGsf8MYlnXVwdtfe2cEH6xpcHvE7NGN1Gfz3SMattQ_71ne-Oa11uOh1A_g1eAMxjpFF15zaQ9vHW3RZ6y7C9F8n6OP5aZu_JKvNssgXq8RSkg4J15JlZam0AiaYkKnkwBnVrDSmKg0FUhsCQmppMjqnShE9p2XJM0EypaqaT9D9-a8FgN0-2F6H404IlglG-C-Ni2wL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection and Quantification of Tungsten Inclusion in Weld Thermographs for On-line Weld Monitoring by Region Growing and Morphological Image Processing Algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nandhitha, N.M. ; Manoharan, N. ; Rani, B.S. ; Venkataraman, B. ; Sundaram, P.K. ; Raj, B.</creator><creatorcontrib>Nandhitha, N.M. ; Manoharan, N. ; Rani, B.S. ; Venkataraman, B. ; Sundaram, P.K. ; Raj, B.</creatorcontrib><description>Tungsten inert gas welding is the best suited welding technique for precision welding in atomic and aircraft industries. The most commonly occurring weld defect is tungsten inclusion, which is mainly due to high welding current. Monitoring and controlling weld current can avoid the defect. Developing an automated on-line welding system to correct the deviation in the welding current requires an effective image-processing algorithm to extract defect features from the sensor output image. Infrared thermography is the best-suited sensor for on-line weld monitoring. Conventional feature extraction algorithms are parameter dependent, image dependent and time consuming thereby making it unsuitable for on-line monitoring. This paper proposes region growing and morphological image processing algorithm to identify and quantify the weld defect from thermographs. Defect is quantified by major axis length, minor axis length and area. It takes 0.406 seconds in contrast to 3.484 seconds of the conventional algorithm in a Pentium IV system with a processor speed of 2.64 GHZ system.</description><identifier>ISBN: 0769530508</identifier><identifier>ISBN: 9780769530505</identifier><identifier>DOI: 10.1109/ICCIMA.2007.131</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace industry ; Aircraft ; Automatic control ; Electrical equipment industry ; Feature extraction ; Gas industry ; Image processing ; Monitoring ; Tungsten ; Welding</subject><ispartof>International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), 2007, Vol.3, p.513-518</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4426420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4426420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nandhitha, N.M.</creatorcontrib><creatorcontrib>Manoharan, N.</creatorcontrib><creatorcontrib>Rani, B.S.</creatorcontrib><creatorcontrib>Venkataraman, B.</creatorcontrib><creatorcontrib>Sundaram, P.K.</creatorcontrib><creatorcontrib>Raj, B.</creatorcontrib><title>Detection and Quantification of Tungsten Inclusion in Weld Thermographs for On-line Weld Monitoring by Region Growing and Morphological Image Processing Algorithms</title><title>International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007)</title><addtitle>ICCIMA</addtitle><description>Tungsten inert gas welding is the best suited welding technique for precision welding in atomic and aircraft industries. The most commonly occurring weld defect is tungsten inclusion, which is mainly due to high welding current. Monitoring and controlling weld current can avoid the defect. Developing an automated on-line welding system to correct the deviation in the welding current requires an effective image-processing algorithm to extract defect features from the sensor output image. Infrared thermography is the best-suited sensor for on-line weld monitoring. Conventional feature extraction algorithms are parameter dependent, image dependent and time consuming thereby making it unsuitable for on-line monitoring. This paper proposes region growing and morphological image processing algorithm to identify and quantify the weld defect from thermographs. Defect is quantified by major axis length, minor axis length and area. It takes 0.406 seconds in contrast to 3.484 seconds of the conventional algorithm in a Pentium IV system with a processor speed of 2.64 GHZ system.</description><subject>Aerospace industry</subject><subject>Aircraft</subject><subject>Automatic control</subject><subject>Electrical equipment industry</subject><subject>Feature extraction</subject><subject>Gas industry</subject><subject>Image processing</subject><subject>Monitoring</subject><subject>Tungsten</subject><subject>Welding</subject><isbn>0769530508</isbn><isbn>9780769530505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjc1OwzAQhC0hJKD0zIGLXyDFf4nrYxWgRGpVQEUcK8fZJEaJXdmpUJ-HF6Wh7GWkb2Z2ELqjZEYpUQ9FnhfrxYwRImeU0wt0Q2SmUk5SMr9C0xi_yOlESlUmr9HPIwxgBusd1q7CbwftBltbo_-Qr_H24Jo4gMOFM90hjtQ6_AldhbcthN43Qe_biGsf8MYlnXVwdtfe2cEH6xpcHvE7NGN1Gfz3SMattQ_71ne-Oa11uOh1A_g1eAMxjpFF15zaQ9vHW3RZ6y7C9F8n6OP5aZu_JKvNssgXq8RSkg4J15JlZam0AiaYkKnkwBnVrDSmKg0FUhsCQmppMjqnShE9p2XJM0EypaqaT9D9-a8FgN0-2F6H404IlglG-C-Ni2wL</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Nandhitha, N.M.</creator><creator>Manoharan, N.</creator><creator>Rani, B.S.</creator><creator>Venkataraman, B.</creator><creator>Sundaram, P.K.</creator><creator>Raj, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>Detection and Quantification of Tungsten Inclusion in Weld Thermographs for On-line Weld Monitoring by Region Growing and Morphological Image Processing Algorithms</title><author>Nandhitha, N.M. ; Manoharan, N. ; Rani, B.S. ; Venkataraman, B. ; Sundaram, P.K. ; Raj, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-3a726bb9a9e24247573e321a2bccdbc1e0fc0e47a7c6181990a81bb3640699df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerospace industry</topic><topic>Aircraft</topic><topic>Automatic control</topic><topic>Electrical equipment industry</topic><topic>Feature extraction</topic><topic>Gas industry</topic><topic>Image processing</topic><topic>Monitoring</topic><topic>Tungsten</topic><topic>Welding</topic><toplevel>online_resources</toplevel><creatorcontrib>Nandhitha, N.M.</creatorcontrib><creatorcontrib>Manoharan, N.</creatorcontrib><creatorcontrib>Rani, B.S.</creatorcontrib><creatorcontrib>Venkataraman, B.</creatorcontrib><creatorcontrib>Sundaram, P.K.</creatorcontrib><creatorcontrib>Raj, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nandhitha, N.M.</au><au>Manoharan, N.</au><au>Rani, B.S.</au><au>Venkataraman, B.</au><au>Sundaram, P.K.</au><au>Raj, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection and Quantification of Tungsten Inclusion in Weld Thermographs for On-line Weld Monitoring by Region Growing and Morphological Image Processing Algorithms</atitle><btitle>International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007)</btitle><stitle>ICCIMA</stitle><date>2007-12</date><risdate>2007</risdate><volume>3</volume><spage>513</spage><epage>518</epage><pages>513-518</pages><isbn>0769530508</isbn><isbn>9780769530505</isbn><abstract>Tungsten inert gas welding is the best suited welding technique for precision welding in atomic and aircraft industries. The most commonly occurring weld defect is tungsten inclusion, which is mainly due to high welding current. Monitoring and controlling weld current can avoid the defect. Developing an automated on-line welding system to correct the deviation in the welding current requires an effective image-processing algorithm to extract defect features from the sensor output image. Infrared thermography is the best-suited sensor for on-line weld monitoring. Conventional feature extraction algorithms are parameter dependent, image dependent and time consuming thereby making it unsuitable for on-line monitoring. This paper proposes region growing and morphological image processing algorithm to identify and quantify the weld defect from thermographs. Defect is quantified by major axis length, minor axis length and area. It takes 0.406 seconds in contrast to 3.484 seconds of the conventional algorithm in a Pentium IV system with a processor speed of 2.64 GHZ system.</abstract><pub>IEEE</pub><doi>10.1109/ICCIMA.2007.131</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769530508
ispartof International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), 2007, Vol.3, p.513-518
issn
language eng
recordid cdi_ieee_primary_4426420
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerospace industry
Aircraft
Automatic control
Electrical equipment industry
Feature extraction
Gas industry
Image processing
Monitoring
Tungsten
Welding
title Detection and Quantification of Tungsten Inclusion in Weld Thermographs for On-line Weld Monitoring by Region Growing and Morphological Image Processing Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20and%20Quantification%20of%20Tungsten%20Inclusion%20in%20Weld%20Thermographs%20for%20On-line%20Weld%20Monitoring%20by%20Region%20Growing%20and%20Morphological%20Image%20Processing%20Algorithms&rft.btitle=International%20Conference%20on%20Computational%20Intelligence%20and%20Multimedia%20Applications%20(ICCIMA%202007)&rft.au=Nandhitha,%20N.M.&rft.date=2007-12&rft.volume=3&rft.spage=513&rft.epage=518&rft.pages=513-518&rft.isbn=0769530508&rft.isbn_list=9780769530505&rft_id=info:doi/10.1109/ICCIMA.2007.131&rft_dat=%3Cieee_6IE%3E4426420%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-3a726bb9a9e24247573e321a2bccdbc1e0fc0e47a7c6181990a81bb3640699df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4426420&rfr_iscdi=true