Loading…
Assessing the value of unrated items in collaborative filtering
In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In th...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 216 |
container_issue | |
container_start_page | 212 |
container_title | |
container_volume | 1 |
creator | Kunegis, J. Lommatzsch, A. Mehlitz, M. Albayrak, S. |
description | In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In this paper, we empirically analyze the effect of a varying default value of unrated items on various memory-based collaborative rating prediction algorithms on different rating corpora, in order to understand the assumptions these algorithms make about the rating database and to recommend default values for them. |
doi_str_mv | 10.1109/ICDIM.2007.4444225 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4444225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4444225</ieee_id><sourcerecordid>4444225</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b5869030b7c86b31ab696171b5a0b8495fbe82411c1e801919b8461f705b63473</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhUdEUGtfQDfzAon3zv-spMS_QMVNF-7KTLzRkTSRTFrw7Q1Y8GwO54Nz4DB2jVAigr-tq_v6pRQAtlSzhNAn7BKVUAqVNe70P-i3c7bM-QtmKS2dhAt2t8qZck79B58-iR9Ctyc-tHzfj2Gid54m2mWeet4MXRfiMNN0IN6mbqJxbl2xszZ0mZZHX7DN48Omei7Wr091tVoXycNURO2MBwnRNs5EiSEab9Bi1AGiU163kZxQiA2SA_ToZ2qwtaCjkcrKBbv5m01EtP0e0y6MP9vjX_kLpzRIZA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing the value of unrated items in collaborative filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kunegis, J. ; Lommatzsch, A. ; Mehlitz, M. ; Albayrak, S.</creator><creatorcontrib>Kunegis, J. ; Lommatzsch, A. ; Mehlitz, M. ; Albayrak, S.</creatorcontrib><description>In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In this paper, we empirically analyze the effect of a varying default value of unrated items on various memory-based collaborative rating prediction algorithms on different rating corpora, in order to understand the assumptions these algorithms make about the rating database and to recommend default values for them.</description><identifier>ISBN: 142441475X</identifier><identifier>ISBN: 9781424414758</identifier><identifier>EISBN: 1424414768</identifier><identifier>EISBN: 9781424414765</identifier><identifier>DOI: 10.1109/ICDIM.2007.4444225</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Collaboration ; Collaborative work ; Filtering ; Monitoring ; Motion pictures ; Prediction algorithms ; Sparse matrices ; Voting</subject><ispartof>2007 2nd International Conference on Digital Information Management, 2007, Vol.1, p.212-216</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4444225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4444225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kunegis, J.</creatorcontrib><creatorcontrib>Lommatzsch, A.</creatorcontrib><creatorcontrib>Mehlitz, M.</creatorcontrib><creatorcontrib>Albayrak, S.</creatorcontrib><title>Assessing the value of unrated items in collaborative filtering</title><title>2007 2nd International Conference on Digital Information Management</title><addtitle>ICDIM</addtitle><description>In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In this paper, we empirically analyze the effect of a varying default value of unrated items on various memory-based collaborative rating prediction algorithms on different rating corpora, in order to understand the assumptions these algorithms make about the rating database and to recommend default values for them.</description><subject>Algorithm design and analysis</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Filtering</subject><subject>Monitoring</subject><subject>Motion pictures</subject><subject>Prediction algorithms</subject><subject>Sparse matrices</subject><subject>Voting</subject><isbn>142441475X</isbn><isbn>9781424414758</isbn><isbn>1424414768</isbn><isbn>9781424414765</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj81Kw0AUhUdEUGtfQDfzAon3zv-spMS_QMVNF-7KTLzRkTSRTFrw7Q1Y8GwO54Nz4DB2jVAigr-tq_v6pRQAtlSzhNAn7BKVUAqVNe70P-i3c7bM-QtmKS2dhAt2t8qZck79B58-iR9Ctyc-tHzfj2Gid54m2mWeet4MXRfiMNN0IN6mbqJxbl2xszZ0mZZHX7DN48Omei7Wr091tVoXycNURO2MBwnRNs5EiSEab9Bi1AGiU163kZxQiA2SA_ToZ2qwtaCjkcrKBbv5m01EtP0e0y6MP9vjX_kLpzRIZA</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Kunegis, J.</creator><creator>Lommatzsch, A.</creator><creator>Mehlitz, M.</creator><creator>Albayrak, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Assessing the value of unrated items in collaborative filtering</title><author>Kunegis, J. ; Lommatzsch, A. ; Mehlitz, M. ; Albayrak, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b5869030b7c86b31ab696171b5a0b8495fbe82411c1e801919b8461f705b63473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Filtering</topic><topic>Monitoring</topic><topic>Motion pictures</topic><topic>Prediction algorithms</topic><topic>Sparse matrices</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Kunegis, J.</creatorcontrib><creatorcontrib>Lommatzsch, A.</creatorcontrib><creatorcontrib>Mehlitz, M.</creatorcontrib><creatorcontrib>Albayrak, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kunegis, J.</au><au>Lommatzsch, A.</au><au>Mehlitz, M.</au><au>Albayrak, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing the value of unrated items in collaborative filtering</atitle><btitle>2007 2nd International Conference on Digital Information Management</btitle><stitle>ICDIM</stitle><date>2007-10</date><risdate>2007</risdate><volume>1</volume><spage>212</spage><epage>216</epage><pages>212-216</pages><isbn>142441475X</isbn><isbn>9781424414758</isbn><eisbn>1424414768</eisbn><eisbn>9781424414765</eisbn><abstract>In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In this paper, we empirically analyze the effect of a varying default value of unrated items on various memory-based collaborative rating prediction algorithms on different rating corpora, in order to understand the assumptions these algorithms make about the rating database and to recommend default values for them.</abstract><pub>IEEE</pub><doi>10.1109/ICDIM.2007.4444225</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 142441475X |
ispartof | 2007 2nd International Conference on Digital Information Management, 2007, Vol.1, p.212-216 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4444225 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Collaboration Collaborative work Filtering Monitoring Motion pictures Prediction algorithms Sparse matrices Voting |
title | Assessing the value of unrated items in collaborative filtering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20the%20value%20of%20unrated%20items%20in%20collaborative%20filtering&rft.btitle=2007%202nd%20International%20Conference%20on%20Digital%20Information%20Management&rft.au=Kunegis,%20J.&rft.date=2007-10&rft.volume=1&rft.spage=212&rft.epage=216&rft.pages=212-216&rft.isbn=142441475X&rft.isbn_list=9781424414758&rft_id=info:doi/10.1109/ICDIM.2007.4444225&rft.eisbn=1424414768&rft.eisbn_list=9781424414765&rft_dat=%3Cieee_6IE%3E4444225%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-b5869030b7c86b31ab696171b5a0b8495fbe82411c1e801919b8461f705b63473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4444225&rfr_iscdi=true |