Loading…

Assessing the value of unrated items in collaborative filtering

In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In th...

Full description

Saved in:
Bibliographic Details
Main Authors: Kunegis, J., Lommatzsch, A., Mehlitz, M., Albayrak, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 216
container_issue
container_start_page 212
container_title
container_volume 1
creator Kunegis, J.
Lommatzsch, A.
Mehlitz, M.
Albayrak, S.
description In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In this paper, we empirically analyze the effect of a varying default value of unrated items on various memory-based collaborative rating prediction algorithms on different rating corpora, in order to understand the assumptions these algorithms make about the rating database and to recommend default values for them.
doi_str_mv 10.1109/ICDIM.2007.4444225
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4444225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4444225</ieee_id><sourcerecordid>4444225</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b5869030b7c86b31ab696171b5a0b8495fbe82411c1e801919b8461f705b63473</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhUdEUGtfQDfzAon3zv-spMS_QMVNF-7KTLzRkTSRTFrw7Q1Y8GwO54Nz4DB2jVAigr-tq_v6pRQAtlSzhNAn7BKVUAqVNe70P-i3c7bM-QtmKS2dhAt2t8qZck79B58-iR9Ctyc-tHzfj2Gid54m2mWeet4MXRfiMNN0IN6mbqJxbl2xszZ0mZZHX7DN48Omei7Wr091tVoXycNURO2MBwnRNs5EiSEab9Bi1AGiU163kZxQiA2SA_ToZ2qwtaCjkcrKBbv5m01EtP0e0y6MP9vjX_kLpzRIZA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing the value of unrated items in collaborative filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kunegis, J. ; Lommatzsch, A. ; Mehlitz, M. ; Albayrak, S.</creator><creatorcontrib>Kunegis, J. ; Lommatzsch, A. ; Mehlitz, M. ; Albayrak, S.</creatorcontrib><description>In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In this paper, we empirically analyze the effect of a varying default value of unrated items on various memory-based collaborative rating prediction algorithms on different rating corpora, in order to understand the assumptions these algorithms make about the rating database and to recommend default values for them.</description><identifier>ISBN: 142441475X</identifier><identifier>ISBN: 9781424414758</identifier><identifier>EISBN: 1424414768</identifier><identifier>EISBN: 9781424414765</identifier><identifier>DOI: 10.1109/ICDIM.2007.4444225</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Collaboration ; Collaborative work ; Filtering ; Monitoring ; Motion pictures ; Prediction algorithms ; Sparse matrices ; Voting</subject><ispartof>2007 2nd International Conference on Digital Information Management, 2007, Vol.1, p.212-216</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4444225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4444225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kunegis, J.</creatorcontrib><creatorcontrib>Lommatzsch, A.</creatorcontrib><creatorcontrib>Mehlitz, M.</creatorcontrib><creatorcontrib>Albayrak, S.</creatorcontrib><title>Assessing the value of unrated items in collaborative filtering</title><title>2007 2nd International Conference on Digital Information Management</title><addtitle>ICDIM</addtitle><description>In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In this paper, we empirically analyze the effect of a varying default value of unrated items on various memory-based collaborative rating prediction algorithms on different rating corpora, in order to understand the assumptions these algorithms make about the rating database and to recommend default values for them.</description><subject>Algorithm design and analysis</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Filtering</subject><subject>Monitoring</subject><subject>Motion pictures</subject><subject>Prediction algorithms</subject><subject>Sparse matrices</subject><subject>Voting</subject><isbn>142441475X</isbn><isbn>9781424414758</isbn><isbn>1424414768</isbn><isbn>9781424414765</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj81Kw0AUhUdEUGtfQDfzAon3zv-spMS_QMVNF-7KTLzRkTSRTFrw7Q1Y8GwO54Nz4DB2jVAigr-tq_v6pRQAtlSzhNAn7BKVUAqVNe70P-i3c7bM-QtmKS2dhAt2t8qZck79B58-iR9Ctyc-tHzfj2Gid54m2mWeet4MXRfiMNN0IN6mbqJxbl2xszZ0mZZHX7DN48Omei7Wr091tVoXycNURO2MBwnRNs5EiSEab9Bi1AGiU163kZxQiA2SA_ToZ2qwtaCjkcrKBbv5m01EtP0e0y6MP9vjX_kLpzRIZA</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Kunegis, J.</creator><creator>Lommatzsch, A.</creator><creator>Mehlitz, M.</creator><creator>Albayrak, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Assessing the value of unrated items in collaborative filtering</title><author>Kunegis, J. ; Lommatzsch, A. ; Mehlitz, M. ; Albayrak, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b5869030b7c86b31ab696171b5a0b8495fbe82411c1e801919b8461f705b63473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Filtering</topic><topic>Monitoring</topic><topic>Motion pictures</topic><topic>Prediction algorithms</topic><topic>Sparse matrices</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Kunegis, J.</creatorcontrib><creatorcontrib>Lommatzsch, A.</creatorcontrib><creatorcontrib>Mehlitz, M.</creatorcontrib><creatorcontrib>Albayrak, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kunegis, J.</au><au>Lommatzsch, A.</au><au>Mehlitz, M.</au><au>Albayrak, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing the value of unrated items in collaborative filtering</atitle><btitle>2007 2nd International Conference on Digital Information Management</btitle><stitle>ICDIM</stitle><date>2007-10</date><risdate>2007</risdate><volume>1</volume><spage>212</spage><epage>216</epage><pages>212-216</pages><isbn>142441475X</isbn><isbn>9781424414758</isbn><eisbn>1424414768</eisbn><eisbn>9781424414765</eisbn><abstract>In collaborative filtering systems, a common technique is default voting. Unknown ratings are filled with a default value to alleviate the sparsity of rating databases. We show that the choice of that default value represents an assumption about the underlying prediction algorithm and dataset. In this paper, we empirically analyze the effect of a varying default value of unrated items on various memory-based collaborative rating prediction algorithms on different rating corpora, in order to understand the assumptions these algorithms make about the rating database and to recommend default values for them.</abstract><pub>IEEE</pub><doi>10.1109/ICDIM.2007.4444225</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142441475X
ispartof 2007 2nd International Conference on Digital Information Management, 2007, Vol.1, p.212-216
issn
language eng
recordid cdi_ieee_primary_4444225
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Collaboration
Collaborative work
Filtering
Monitoring
Motion pictures
Prediction algorithms
Sparse matrices
Voting
title Assessing the value of unrated items in collaborative filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20the%20value%20of%20unrated%20items%20in%20collaborative%20filtering&rft.btitle=2007%202nd%20International%20Conference%20on%20Digital%20Information%20Management&rft.au=Kunegis,%20J.&rft.date=2007-10&rft.volume=1&rft.spage=212&rft.epage=216&rft.pages=212-216&rft.isbn=142441475X&rft.isbn_list=9781424414758&rft_id=info:doi/10.1109/ICDIM.2007.4444225&rft.eisbn=1424414768&rft.eisbn_list=9781424414765&rft_dat=%3Cieee_6IE%3E4444225%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-b5869030b7c86b31ab696171b5a0b8495fbe82411c1e801919b8461f705b63473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4444225&rfr_iscdi=true