Loading…

Reliable Computation in Noisy Backgrounds Using Real-Time Neuromorphic Hardware

Spike-time based coding of neural information, in contrast to rate coding, requires that neurons reliably and precisely fire spikes in response to repeated identical inputs, despite a high degree of noise from stochastic synaptic firing and extraneous background inputs. We investigated the degree of...

Full description

Saved in:
Bibliographic Details
Main Authors: Hsi-Ping Wang, Chicca, E., Indiveri, G., Sejnowski, T.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 74
container_issue
container_start_page 71
container_title
container_volume
creator Hsi-Ping Wang
Chicca, E.
Indiveri, G.
Sejnowski, T.J.
description Spike-time based coding of neural information, in contrast to rate coding, requires that neurons reliably and precisely fire spikes in response to repeated identical inputs, despite a high degree of noise from stochastic synaptic firing and extraneous background inputs. We investigated the degree of reliability and precision achievable in various noisy background conditions using real-time neuromorphic VLSI hardware which models integrate-and-fire spiking neurons and dynamic synapses. To do so, we varied two properties of the inputs to a single neuron, synaptic weight and synchrony magnitude (number of synchronously firing pre-synaptic neurons). Thanks to the realtime response properties of the VLSI system we could carry out extensive exploration of the parameter space, and measure the neurons firing rate and reliability in real-time. Reliability of output spiking was primarily influenced by the amount of synchronicity of synaptic input, rather than the synaptic weight of those synapses. These results highlight possible regimes in which real-time neuromorphic systems might be better able to reliably compute with spikes despite noisy input.
doi_str_mv 10.1109/BIOCAS.2007.4463311
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4463311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4463311</ieee_id><sourcerecordid>20496932</sourcerecordid><originalsourceid>FETCH-LOGICAL-i251t-117e3f13470cc68c94fc8a6b990c3a79a40f451b828f866b0164c31a7df44d9e3</originalsourceid><addsrcrecordid>eNo1kE1PwjAAhusHiYD8Ai49eRv2a-16BKJCQiBBSLwtXddhdVtnu8Xw751BT-_hefPkzQvAFKMZxkg-Lta75fx1RhASM8Y4pRhfgRFmhDEck_jtGgyJ4DzqWXwDJlIk_4zR255hTiOGSDwAo1-HRExIfgcmIXwghDBPSIL4EOz2prQqKw1cuqrpWtVaV0Nbw62z4QwXSn-evOvqPMBjsPUJ7o0qo4OtDNyazrvK-ebdarhSPv9W3tyDQaHKYCZ_OQbH56fDchVtdi_r5XwTWRLjNsJYGFpgygTSmidaskInimdSIk2VkIqhgsU461cWCedZP5hpipXIC8ZyaegYPFy8jXdfnQltWtmgTVmq2rgupAQxySUlfXF6KVpjTNp4Wyl_Tv8epT-_BmMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20496932</pqid></control><display><type>conference_proceeding</type><title>Reliable Computation in Noisy Backgrounds Using Real-Time Neuromorphic Hardware</title><source>IEEE Xplore All Conference Series</source><creator>Hsi-Ping Wang ; Chicca, E. ; Indiveri, G. ; Sejnowski, T.J.</creator><creatorcontrib>Hsi-Ping Wang ; Chicca, E. ; Indiveri, G. ; Sejnowski, T.J.</creatorcontrib><description>Spike-time based coding of neural information, in contrast to rate coding, requires that neurons reliably and precisely fire spikes in response to repeated identical inputs, despite a high degree of noise from stochastic synaptic firing and extraneous background inputs. We investigated the degree of reliability and precision achievable in various noisy background conditions using real-time neuromorphic VLSI hardware which models integrate-and-fire spiking neurons and dynamic synapses. To do so, we varied two properties of the inputs to a single neuron, synaptic weight and synchrony magnitude (number of synchronously firing pre-synaptic neurons). Thanks to the realtime response properties of the VLSI system we could carry out extensive exploration of the parameter space, and measure the neurons firing rate and reliability in real-time. Reliability of output spiking was primarily influenced by the amount of synchronicity of synaptic input, rather than the synaptic weight of those synapses. These results highlight possible regimes in which real-time neuromorphic systems might be better able to reliably compute with spikes despite noisy input.</description><identifier>ISSN: 2163-4025</identifier><identifier>ISBN: 9781424415243</identifier><identifier>ISBN: 1424415241</identifier><identifier>EISSN: 2766-4465</identifier><identifier>EISBN: 142441525X</identifier><identifier>EISBN: 9781424415250</identifier><identifier>DOI: 10.1109/BIOCAS.2007.4463311</identifier><identifier>LCCN: 2007904796</identifier><language>eng</language><publisher>IEEE</publisher><subject>Background noise ; Biological information theory ; Biology computing ; Hardware ; Neuromorphics ; Neurons ; Real time systems ; Stochastic resonance ; Timing ; Very large scale integration</subject><ispartof>2007 IEEE Biomedical Circuits and Systems Conference, 2007, p.71-74</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4463311$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4463311$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsi-Ping Wang</creatorcontrib><creatorcontrib>Chicca, E.</creatorcontrib><creatorcontrib>Indiveri, G.</creatorcontrib><creatorcontrib>Sejnowski, T.J.</creatorcontrib><title>Reliable Computation in Noisy Backgrounds Using Real-Time Neuromorphic Hardware</title><title>2007 IEEE Biomedical Circuits and Systems Conference</title><addtitle>BIOCAS</addtitle><description>Spike-time based coding of neural information, in contrast to rate coding, requires that neurons reliably and precisely fire spikes in response to repeated identical inputs, despite a high degree of noise from stochastic synaptic firing and extraneous background inputs. We investigated the degree of reliability and precision achievable in various noisy background conditions using real-time neuromorphic VLSI hardware which models integrate-and-fire spiking neurons and dynamic synapses. To do so, we varied two properties of the inputs to a single neuron, synaptic weight and synchrony magnitude (number of synchronously firing pre-synaptic neurons). Thanks to the realtime response properties of the VLSI system we could carry out extensive exploration of the parameter space, and measure the neurons firing rate and reliability in real-time. Reliability of output spiking was primarily influenced by the amount of synchronicity of synaptic input, rather than the synaptic weight of those synapses. These results highlight possible regimes in which real-time neuromorphic systems might be better able to reliably compute with spikes despite noisy input.</description><subject>Background noise</subject><subject>Biological information theory</subject><subject>Biology computing</subject><subject>Hardware</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Real time systems</subject><subject>Stochastic resonance</subject><subject>Timing</subject><subject>Very large scale integration</subject><issn>2163-4025</issn><issn>2766-4465</issn><isbn>9781424415243</isbn><isbn>1424415241</isbn><isbn>142441525X</isbn><isbn>9781424415250</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1PwjAAhusHiYD8Ai49eRv2a-16BKJCQiBBSLwtXddhdVtnu8Xw751BT-_hefPkzQvAFKMZxkg-Lta75fx1RhASM8Y4pRhfgRFmhDEck_jtGgyJ4DzqWXwDJlIk_4zR255hTiOGSDwAo1-HRExIfgcmIXwghDBPSIL4EOz2prQqKw1cuqrpWtVaV0Nbw62z4QwXSn-evOvqPMBjsPUJ7o0qo4OtDNyazrvK-ebdarhSPv9W3tyDQaHKYCZ_OQbH56fDchVtdi_r5XwTWRLjNsJYGFpgygTSmidaskInimdSIk2VkIqhgsU461cWCedZP5hpipXIC8ZyaegYPFy8jXdfnQltWtmgTVmq2rgupAQxySUlfXF6KVpjTNp4Wyl_Tv8epT-_BmMs</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Hsi-Ping Wang</creator><creator>Chicca, E.</creator><creator>Indiveri, G.</creator><creator>Sejnowski, T.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20070101</creationdate><title>Reliable Computation in Noisy Backgrounds Using Real-Time Neuromorphic Hardware</title><author>Hsi-Ping Wang ; Chicca, E. ; Indiveri, G. ; Sejnowski, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i251t-117e3f13470cc68c94fc8a6b990c3a79a40f451b828f866b0164c31a7df44d9e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Background noise</topic><topic>Biological information theory</topic><topic>Biology computing</topic><topic>Hardware</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Real time systems</topic><topic>Stochastic resonance</topic><topic>Timing</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsi-Ping Wang</creatorcontrib><creatorcontrib>Chicca, E.</creatorcontrib><creatorcontrib>Indiveri, G.</creatorcontrib><creatorcontrib>Sejnowski, T.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsi-Ping Wang</au><au>Chicca, E.</au><au>Indiveri, G.</au><au>Sejnowski, T.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reliable Computation in Noisy Backgrounds Using Real-Time Neuromorphic Hardware</atitle><btitle>2007 IEEE Biomedical Circuits and Systems Conference</btitle><stitle>BIOCAS</stitle><date>2007-01-01</date><risdate>2007</risdate><spage>71</spage><epage>74</epage><pages>71-74</pages><issn>2163-4025</issn><eissn>2766-4465</eissn><isbn>9781424415243</isbn><isbn>1424415241</isbn><eisbn>142441525X</eisbn><eisbn>9781424415250</eisbn><abstract>Spike-time based coding of neural information, in contrast to rate coding, requires that neurons reliably and precisely fire spikes in response to repeated identical inputs, despite a high degree of noise from stochastic synaptic firing and extraneous background inputs. We investigated the degree of reliability and precision achievable in various noisy background conditions using real-time neuromorphic VLSI hardware which models integrate-and-fire spiking neurons and dynamic synapses. To do so, we varied two properties of the inputs to a single neuron, synaptic weight and synchrony magnitude (number of synchronously firing pre-synaptic neurons). Thanks to the realtime response properties of the VLSI system we could carry out extensive exploration of the parameter space, and measure the neurons firing rate and reliability in real-time. Reliability of output spiking was primarily influenced by the amount of synchronicity of synaptic input, rather than the synaptic weight of those synapses. These results highlight possible regimes in which real-time neuromorphic systems might be better able to reliably compute with spikes despite noisy input.</abstract><pub>IEEE</pub><doi>10.1109/BIOCAS.2007.4463311</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2163-4025
ispartof 2007 IEEE Biomedical Circuits and Systems Conference, 2007, p.71-74
issn 2163-4025
2766-4465
language eng
recordid cdi_ieee_primary_4463311
source IEEE Xplore All Conference Series
subjects Background noise
Biological information theory
Biology computing
Hardware
Neuromorphics
Neurons
Real time systems
Stochastic resonance
Timing
Very large scale integration
title Reliable Computation in Noisy Backgrounds Using Real-Time Neuromorphic Hardware
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reliable%20Computation%20in%20Noisy%20Backgrounds%20Using%20Real-Time%20Neuromorphic%20Hardware&rft.btitle=2007%20IEEE%20Biomedical%20Circuits%20and%20Systems%20Conference&rft.au=Hsi-Ping%20Wang&rft.date=2007-01-01&rft.spage=71&rft.epage=74&rft.pages=71-74&rft.issn=2163-4025&rft.eissn=2766-4465&rft.isbn=9781424415243&rft.isbn_list=1424415241&rft_id=info:doi/10.1109/BIOCAS.2007.4463311&rft.eisbn=142441525X&rft.eisbn_list=9781424415250&rft_dat=%3Cproquest_CHZPO%3E20496932%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i251t-117e3f13470cc68c94fc8a6b990c3a79a40f451b828f866b0164c31a7df44d9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20496932&rft_id=info:pmid/&rft_ieee_id=4463311&rfr_iscdi=true