Loading…

An Investigation of Using the Spectral Characteristics From Ground Penetrating Radar for Landmine/Clutter Discrimination

Ground penetrating radar (GPR)-based discrimination of landmines from clutter is known to be challenging due to the wide variability of possible clutter (e.g., rocks, roots, and general soil heterogeneity). This paper discusses the use of GPR frequency-domain spectral features to improve the detecti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2008-04, Vol.46 (4), p.1177-1191
Main Authors: Ho, K.C., Carin, L., Gader, P.D., Wilson, J.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ground penetrating radar (GPR)-based discrimination of landmines from clutter is known to be challenging due to the wide variability of possible clutter (e.g., rocks, roots, and general soil heterogeneity). This paper discusses the use of GPR frequency-domain spectral features to improve the detection of weak-scattering plastic mines and to reduce the number of false alarms resulting from clutter. The motivation for this approach comes from the fact that landmine targets and clutter objects often have different shapes and/or composition, yielding different energy density spectrum (EDS) that may be exploited for their discrimination (this information is also present in time-domain data, but in the frequency domain we can remove a phase if desired and can reveal better spatial characteristics and therefore often achieve greater robustness). This paper first applies the finite-difference time-domain (FDTD) modeling technique to establish the theoretical foundation. The method to generate EDS from GPR measurements is then described. The consistency of the frequency-domain features is examined through two different GPRs that have different spatial sampling rates and frequency bandwidths. Experimental results from several test sites, based on GPR data collected over buried mines and emplaced buried clutter objects, corroborate the theoretical development and the effectiveness of the proposed spectral feature to increase the accuracy of landmine detection and discrimination.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2008.915747