Loading…

Manufacturable Processes for \leq 32-nm-node CMOS Enhancement by Synchronous Optimization of Strain-Engineered Channel and External Parasitic Resistances

Manufacturable processes to reduce both channel and external resistances (R Ext ) in CMOS devices are described. Simulations show that R Ext will become equivalent to strained Si channel resistance near the 32-nm logic node. Tensile stress in plasma-enhanced chemical-vapor-deposited SiN x liners is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2008-05, Vol.55 (5), p.1259-1264
Main Authors: Noori, A.M., Balseanu, M., Boelen, P., Cockburn, A., Demuynck, S., Felch, S., Gandikota, S., Gelatos, A.J., Khandelwal, A., Kittl, J.A., Lauwers, A., Wen-Chin Lee, Jianxin Lei, Mandrekar, T., Schreutelkamp, R., Shah, K., Thompson, S.E., Verheyen, P., Ching-Ya Wang, Li-Qun Xia, Arghavani, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1060-a603aafdff68fba7adc11502486941a4ee6993447efa09c55f84b105c74dd7a13
cites cdi_FETCH-LOGICAL-c1060-a603aafdff68fba7adc11502486941a4ee6993447efa09c55f84b105c74dd7a13
container_end_page 1264
container_issue 5
container_start_page 1259
container_title IEEE transactions on electron devices
container_volume 55
creator Noori, A.M.
Balseanu, M.
Boelen, P.
Cockburn, A.
Demuynck, S.
Felch, S.
Gandikota, S.
Gelatos, A.J.
Khandelwal, A.
Kittl, J.A.
Lauwers, A.
Wen-Chin Lee
Jianxin Lei
Mandrekar, T.
Schreutelkamp, R.
Shah, K.
Thompson, S.E.
Verheyen, P.
Ching-Ya Wang
Li-Qun Xia
Arghavani, R.
description Manufacturable processes to reduce both channel and external resistances (R Ext ) in CMOS devices are described. Simulations show that R Ext will become equivalent to strained Si channel resistance near the 32-nm logic node. Tensile stress in plasma-enhanced chemical-vapor-deposited SiN x liners is increased with UV curing, boosting the NMOS drive current by 20% relative to a neutral reference. W contact-plug resistance (R c ) is reduced by 40% by optimizing preclean, liner/barrier, and nucleation steps. Replacing the fill material with Cu reduces R c by > 35% as compared to W. The Schottky barrier height of silicide contacts to p-Si is reduced by 0.12 eV with a 10% addition of Pt, resulting in a ~10% increase in the PMOS drive current. By implementing a two-step anneal process (spike + laser), the source/drain-extension resistance can be reduced by 20%.
doi_str_mv 10.1109/TED.2008.919558
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4475510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4475510</ieee_id><sourcerecordid>10_1109_TED_2008_919558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1060-a603aafdff68fba7adc11502486941a4ee6993447efa09c55f84b105c74dd7a13</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKfXXniTP9AtaZO2uZRZP2Cy4eadUE7TExdp05l04Pwn_ls7Jl4dXjjP-8JDyDVnE86Zmq6Lu0nMWD5RXEmZn5ARlzKLVCrSUzJijOeRSvLknFyE8DHEVIh4RH6ewe0M6H7noWqQLn2nMQQM1HSevjX4SZM4cm3kuhrp7HmxooXbgNPYoutptaervdMb37luF-hi29vWfkNvO0c7Q1e9B-uiwr1bh-ixprOBddhQcDUtvnr0Dhq6BA_B9lbTFww29If6cEnODDQBr_7umLzeF-vZYzRfPDzNbueR5ixlEaQsATC1MWluKsig1pxLFos8VYKDQEyVSoTI0ABTWkqTi4ozqTNR1xnwZEymx17tuxA8mnLrbQt-X3JWHsyWg9nyYLY8mh2ImyNhEfH_e5iQkrPkF8cQd64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Manufacturable Processes for \leq 32-nm-node CMOS Enhancement by Synchronous Optimization of Strain-Engineered Channel and External Parasitic Resistances</title><source>IEEE Xplore (Online service)</source><creator>Noori, A.M. ; Balseanu, M. ; Boelen, P. ; Cockburn, A. ; Demuynck, S. ; Felch, S. ; Gandikota, S. ; Gelatos, A.J. ; Khandelwal, A. ; Kittl, J.A. ; Lauwers, A. ; Wen-Chin Lee ; Jianxin Lei ; Mandrekar, T. ; Schreutelkamp, R. ; Shah, K. ; Thompson, S.E. ; Verheyen, P. ; Ching-Ya Wang ; Li-Qun Xia ; Arghavani, R.</creator><creatorcontrib>Noori, A.M. ; Balseanu, M. ; Boelen, P. ; Cockburn, A. ; Demuynck, S. ; Felch, S. ; Gandikota, S. ; Gelatos, A.J. ; Khandelwal, A. ; Kittl, J.A. ; Lauwers, A. ; Wen-Chin Lee ; Jianxin Lei ; Mandrekar, T. ; Schreutelkamp, R. ; Shah, K. ; Thompson, S.E. ; Verheyen, P. ; Ching-Ya Wang ; Li-Qun Xia ; Arghavani, R.</creatorcontrib><description>Manufacturable processes to reduce both channel and external resistances (R Ext ) in CMOS devices are described. Simulations show that R Ext will become equivalent to strained Si channel resistance near the 32-nm logic node. Tensile stress in plasma-enhanced chemical-vapor-deposited SiN x liners is increased with UV curing, boosting the NMOS drive current by 20% relative to a neutral reference. W contact-plug resistance (R c ) is reduced by 40% by optimizing preclean, liner/barrier, and nucleation steps. Replacing the fill material with Cu reduces R c by &gt; 35% as compared to W. The Schottky barrier height of silicide contacts to p-Si is reduced by 0.12 eV with a 10% addition of Pt, resulting in a ~10% increase in the PMOS drive current. By implementing a two-step anneal process (spike + laser), the source/drain-extension resistance can be reduced by 20%.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2008.919558</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cu contacts ; external resistance ; laser anneal ; silicide ; strain engineering</subject><ispartof>IEEE transactions on electron devices, 2008-05, Vol.55 (5), p.1259-1264</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1060-a603aafdff68fba7adc11502486941a4ee6993447efa09c55f84b105c74dd7a13</citedby><cites>FETCH-LOGICAL-c1060-a603aafdff68fba7adc11502486941a4ee6993447efa09c55f84b105c74dd7a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4475510$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Noori, A.M.</creatorcontrib><creatorcontrib>Balseanu, M.</creatorcontrib><creatorcontrib>Boelen, P.</creatorcontrib><creatorcontrib>Cockburn, A.</creatorcontrib><creatorcontrib>Demuynck, S.</creatorcontrib><creatorcontrib>Felch, S.</creatorcontrib><creatorcontrib>Gandikota, S.</creatorcontrib><creatorcontrib>Gelatos, A.J.</creatorcontrib><creatorcontrib>Khandelwal, A.</creatorcontrib><creatorcontrib>Kittl, J.A.</creatorcontrib><creatorcontrib>Lauwers, A.</creatorcontrib><creatorcontrib>Wen-Chin Lee</creatorcontrib><creatorcontrib>Jianxin Lei</creatorcontrib><creatorcontrib>Mandrekar, T.</creatorcontrib><creatorcontrib>Schreutelkamp, R.</creatorcontrib><creatorcontrib>Shah, K.</creatorcontrib><creatorcontrib>Thompson, S.E.</creatorcontrib><creatorcontrib>Verheyen, P.</creatorcontrib><creatorcontrib>Ching-Ya Wang</creatorcontrib><creatorcontrib>Li-Qun Xia</creatorcontrib><creatorcontrib>Arghavani, R.</creatorcontrib><title>Manufacturable Processes for \leq 32-nm-node CMOS Enhancement by Synchronous Optimization of Strain-Engineered Channel and External Parasitic Resistances</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Manufacturable processes to reduce both channel and external resistances (R Ext ) in CMOS devices are described. Simulations show that R Ext will become equivalent to strained Si channel resistance near the 32-nm logic node. Tensile stress in plasma-enhanced chemical-vapor-deposited SiN x liners is increased with UV curing, boosting the NMOS drive current by 20% relative to a neutral reference. W contact-plug resistance (R c ) is reduced by 40% by optimizing preclean, liner/barrier, and nucleation steps. Replacing the fill material with Cu reduces R c by &gt; 35% as compared to W. The Schottky barrier height of silicide contacts to p-Si is reduced by 0.12 eV with a 10% addition of Pt, resulting in a ~10% increase in the PMOS drive current. By implementing a two-step anneal process (spike + laser), the source/drain-extension resistance can be reduced by 20%.</description><subject>Cu contacts</subject><subject>external resistance</subject><subject>laser anneal</subject><subject>silicide</subject><subject>strain engineering</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKfXXniTP9AtaZO2uZRZP2Cy4eadUE7TExdp05l04Pwn_ls7Jl4dXjjP-8JDyDVnE86Zmq6Lu0nMWD5RXEmZn5ARlzKLVCrSUzJijOeRSvLknFyE8DHEVIh4RH6ewe0M6H7noWqQLn2nMQQM1HSevjX4SZM4cm3kuhrp7HmxooXbgNPYoutptaervdMb37luF-hi29vWfkNvO0c7Q1e9B-uiwr1bh-ixprOBddhQcDUtvnr0Dhq6BA_B9lbTFww29If6cEnODDQBr_7umLzeF-vZYzRfPDzNbueR5ixlEaQsATC1MWluKsig1pxLFos8VYKDQEyVSoTI0ABTWkqTi4ozqTNR1xnwZEymx17tuxA8mnLrbQt-X3JWHsyWg9nyYLY8mh2ImyNhEfH_e5iQkrPkF8cQd64</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Noori, A.M.</creator><creator>Balseanu, M.</creator><creator>Boelen, P.</creator><creator>Cockburn, A.</creator><creator>Demuynck, S.</creator><creator>Felch, S.</creator><creator>Gandikota, S.</creator><creator>Gelatos, A.J.</creator><creator>Khandelwal, A.</creator><creator>Kittl, J.A.</creator><creator>Lauwers, A.</creator><creator>Wen-Chin Lee</creator><creator>Jianxin Lei</creator><creator>Mandrekar, T.</creator><creator>Schreutelkamp, R.</creator><creator>Shah, K.</creator><creator>Thompson, S.E.</creator><creator>Verheyen, P.</creator><creator>Ching-Ya Wang</creator><creator>Li-Qun Xia</creator><creator>Arghavani, R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200805</creationdate><title>Manufacturable Processes for \leq 32-nm-node CMOS Enhancement by Synchronous Optimization of Strain-Engineered Channel and External Parasitic Resistances</title><author>Noori, A.M. ; Balseanu, M. ; Boelen, P. ; Cockburn, A. ; Demuynck, S. ; Felch, S. ; Gandikota, S. ; Gelatos, A.J. ; Khandelwal, A. ; Kittl, J.A. ; Lauwers, A. ; Wen-Chin Lee ; Jianxin Lei ; Mandrekar, T. ; Schreutelkamp, R. ; Shah, K. ; Thompson, S.E. ; Verheyen, P. ; Ching-Ya Wang ; Li-Qun Xia ; Arghavani, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1060-a603aafdff68fba7adc11502486941a4ee6993447efa09c55f84b105c74dd7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cu contacts</topic><topic>external resistance</topic><topic>laser anneal</topic><topic>silicide</topic><topic>strain engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noori, A.M.</creatorcontrib><creatorcontrib>Balseanu, M.</creatorcontrib><creatorcontrib>Boelen, P.</creatorcontrib><creatorcontrib>Cockburn, A.</creatorcontrib><creatorcontrib>Demuynck, S.</creatorcontrib><creatorcontrib>Felch, S.</creatorcontrib><creatorcontrib>Gandikota, S.</creatorcontrib><creatorcontrib>Gelatos, A.J.</creatorcontrib><creatorcontrib>Khandelwal, A.</creatorcontrib><creatorcontrib>Kittl, J.A.</creatorcontrib><creatorcontrib>Lauwers, A.</creatorcontrib><creatorcontrib>Wen-Chin Lee</creatorcontrib><creatorcontrib>Jianxin Lei</creatorcontrib><creatorcontrib>Mandrekar, T.</creatorcontrib><creatorcontrib>Schreutelkamp, R.</creatorcontrib><creatorcontrib>Shah, K.</creatorcontrib><creatorcontrib>Thompson, S.E.</creatorcontrib><creatorcontrib>Verheyen, P.</creatorcontrib><creatorcontrib>Ching-Ya Wang</creatorcontrib><creatorcontrib>Li-Qun Xia</creatorcontrib><creatorcontrib>Arghavani, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noori, A.M.</au><au>Balseanu, M.</au><au>Boelen, P.</au><au>Cockburn, A.</au><au>Demuynck, S.</au><au>Felch, S.</au><au>Gandikota, S.</au><au>Gelatos, A.J.</au><au>Khandelwal, A.</au><au>Kittl, J.A.</au><au>Lauwers, A.</au><au>Wen-Chin Lee</au><au>Jianxin Lei</au><au>Mandrekar, T.</au><au>Schreutelkamp, R.</au><au>Shah, K.</au><au>Thompson, S.E.</au><au>Verheyen, P.</au><au>Ching-Ya Wang</au><au>Li-Qun Xia</au><au>Arghavani, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturable Processes for \leq 32-nm-node CMOS Enhancement by Synchronous Optimization of Strain-Engineered Channel and External Parasitic Resistances</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2008-05</date><risdate>2008</risdate><volume>55</volume><issue>5</issue><spage>1259</spage><epage>1264</epage><pages>1259-1264</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Manufacturable processes to reduce both channel and external resistances (R Ext ) in CMOS devices are described. Simulations show that R Ext will become equivalent to strained Si channel resistance near the 32-nm logic node. Tensile stress in plasma-enhanced chemical-vapor-deposited SiN x liners is increased with UV curing, boosting the NMOS drive current by 20% relative to a neutral reference. W contact-plug resistance (R c ) is reduced by 40% by optimizing preclean, liner/barrier, and nucleation steps. Replacing the fill material with Cu reduces R c by &gt; 35% as compared to W. The Schottky barrier height of silicide contacts to p-Si is reduced by 0.12 eV with a 10% addition of Pt, resulting in a ~10% increase in the PMOS drive current. By implementing a two-step anneal process (spike + laser), the source/drain-extension resistance can be reduced by 20%.</abstract><pub>IEEE</pub><doi>10.1109/TED.2008.919558</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2008-05, Vol.55 (5), p.1259-1264
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_4475510
source IEEE Xplore (Online service)
subjects Cu contacts
external resistance
laser anneal
silicide
strain engineering
title Manufacturable Processes for \leq 32-nm-node CMOS Enhancement by Synchronous Optimization of Strain-Engineered Channel and External Parasitic Resistances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturable%20Processes%20for%20%5Cleq%2032-nm-node%20CMOS%20Enhancement%20by%20Synchronous%20Optimization%20of%20Strain-Engineered%20Channel%20and%20External%20Parasitic%20Resistances&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Noori,%20A.M.&rft.date=2008-05&rft.volume=55&rft.issue=5&rft.spage=1259&rft.epage=1264&rft.pages=1259-1264&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2008.919558&rft_dat=%3Ccrossref_ieee_%3E10_1109_TED_2008_919558%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1060-a603aafdff68fba7adc11502486941a4ee6993447efa09c55f84b105c74dd7a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4475510&rfr_iscdi=true