Loading…

Multiple fundamental frequency estimation using Gaussian smoothness

The goal of a polyphonic music transcription system is to extract a score from an audio signal. A multiple fundamental frequency estimator is the main piece of these systems, whereas tempo detection and key estimation complement them to correctly extract the score. In this work, in order to detect t...

Full description

Saved in:
Bibliographic Details
Main Authors: Pertusa, A., Inesta, J.M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 108
container_issue
container_start_page 105
container_title
container_volume
creator Pertusa, A.
Inesta, J.M.
description The goal of a polyphonic music transcription system is to extract a score from an audio signal. A multiple fundamental frequency estimator is the main piece of these systems, whereas tempo detection and key estimation complement them to correctly extract the score. In this work, in order to detect the fundamental frequencies that are present in a signal, a set of candidates are selected from the spectrum, and all their possible combinations are generated. The best combination is chosen in a frame by frame analysis by applying a set of rules, taking into account the harmonic amplitudes and the spectral smoothness measure described in this work. The system was evaluated and compared to other works, yielding competitive results and performance.
doi_str_mv 10.1109/ICASSP.2008.4517557
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4517557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4517557</ieee_id><sourcerecordid>4517557</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-8a6ba2a5068a555710dd3405de1e8a0b6173831016814a786c7f4002abf2bbad3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1LIpR8QTf5gZR7_YjtJYqgIBWBVJDYVTeNA0apU-Jk0b9vJMpsZjHS6MwwNkdYIIK9ey7v1-u3BQcwC6lQK6XP2A1KLiVKI-05S7jQNkcLnxcstdr8Z0JcsgQVh7xAaa9ZGuMPTJJKKKsSVr6M7eD3rcuaMdS0c2GgNmt69zu6sD1kLg5-R4PvQjZGH76yJY0xegpZ3HXd8B1cjLfsqqE2uvTkM_bx-PBePuWr1-VEvso95zDkhoqKOCkoDKlpAUJdCwmqdugMQVWgFkYgYDHRkzbFVjcSgFPV8KqiWszY_K_XO-c2-34C6w-b0x_iCIREUJU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multiple fundamental frequency estimation using Gaussian smoothness</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pertusa, A. ; Inesta, J.M.</creator><creatorcontrib>Pertusa, A. ; Inesta, J.M.</creatorcontrib><description>The goal of a polyphonic music transcription system is to extract a score from an audio signal. A multiple fundamental frequency estimator is the main piece of these systems, whereas tempo detection and key estimation complement them to correctly extract the score. In this work, in order to detect the fundamental frequencies that are present in a signal, a set of candidates are selected from the spectrum, and all their possible combinations are generated. The best combination is chosen in a frame by frame analysis by applying a set of rules, taking into account the harmonic amplitudes and the spectral smoothness measure described in this work. The system was evaluated and compared to other works, yielding competitive results and performance.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424414833</identifier><identifier>ISBN: 1424414830</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1424414849</identifier><identifier>EISBN: 9781424414840</identifier><identifier>DOI: 10.1109/ICASSP.2008.4517557</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic applications ; Acoustic measurements ; acoustic signal analysis ; Acoustic signal processing ; Frequency estimation ; Gaussian distributions ; Harmonic analysis ; Multiple signal classification ; Music ; Signal analysis ; Signal generators ; Spectral analysis</subject><ispartof>2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.105-108</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4517557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4517557$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pertusa, A.</creatorcontrib><creatorcontrib>Inesta, J.M.</creatorcontrib><title>Multiple fundamental frequency estimation using Gaussian smoothness</title><title>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>The goal of a polyphonic music transcription system is to extract a score from an audio signal. A multiple fundamental frequency estimator is the main piece of these systems, whereas tempo detection and key estimation complement them to correctly extract the score. In this work, in order to detect the fundamental frequencies that are present in a signal, a set of candidates are selected from the spectrum, and all their possible combinations are generated. The best combination is chosen in a frame by frame analysis by applying a set of rules, taking into account the harmonic amplitudes and the spectral smoothness measure described in this work. The system was evaluated and compared to other works, yielding competitive results and performance.</description><subject>Acoustic applications</subject><subject>Acoustic measurements</subject><subject>acoustic signal analysis</subject><subject>Acoustic signal processing</subject><subject>Frequency estimation</subject><subject>Gaussian distributions</subject><subject>Harmonic analysis</subject><subject>Multiple signal classification</subject><subject>Music</subject><subject>Signal analysis</subject><subject>Signal generators</subject><subject>Spectral analysis</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424414833</isbn><isbn>1424414830</isbn><isbn>1424414849</isbn><isbn>9781424414840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAURM1LIpR8QTf5gZR7_YjtJYqgIBWBVJDYVTeNA0apU-Jk0b9vJMpsZjHS6MwwNkdYIIK9ey7v1-u3BQcwC6lQK6XP2A1KLiVKI-05S7jQNkcLnxcstdr8Z0JcsgQVh7xAaa9ZGuMPTJJKKKsSVr6M7eD3rcuaMdS0c2GgNmt69zu6sD1kLg5-R4PvQjZGH76yJY0xegpZ3HXd8B1cjLfsqqE2uvTkM_bx-PBePuWr1-VEvso95zDkhoqKOCkoDKlpAUJdCwmqdugMQVWgFkYgYDHRkzbFVjcSgFPV8KqiWszY_K_XO-c2-34C6w-b0x_iCIREUJU</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Pertusa, A.</creator><creator>Inesta, J.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Multiple fundamental frequency estimation using Gaussian smoothness</title><author>Pertusa, A. ; Inesta, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-8a6ba2a5068a555710dd3405de1e8a0b6173831016814a786c7f4002abf2bbad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustic applications</topic><topic>Acoustic measurements</topic><topic>acoustic signal analysis</topic><topic>Acoustic signal processing</topic><topic>Frequency estimation</topic><topic>Gaussian distributions</topic><topic>Harmonic analysis</topic><topic>Multiple signal classification</topic><topic>Music</topic><topic>Signal analysis</topic><topic>Signal generators</topic><topic>Spectral analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Pertusa, A.</creatorcontrib><creatorcontrib>Inesta, J.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pertusa, A.</au><au>Inesta, J.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multiple fundamental frequency estimation using Gaussian smoothness</atitle><btitle>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>105</spage><epage>108</epage><pages>105-108</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424414833</isbn><isbn>1424414830</isbn><eisbn>1424414849</eisbn><eisbn>9781424414840</eisbn><abstract>The goal of a polyphonic music transcription system is to extract a score from an audio signal. A multiple fundamental frequency estimator is the main piece of these systems, whereas tempo detection and key estimation complement them to correctly extract the score. In this work, in order to detect the fundamental frequencies that are present in a signal, a set of candidates are selected from the spectrum, and all their possible combinations are generated. The best combination is chosen in a frame by frame analysis by applying a set of rules, taking into account the harmonic amplitudes and the spectral smoothness measure described in this work. The system was evaluated and compared to other works, yielding competitive results and performance.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2008.4517557</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.105-108
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4517557
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic applications
Acoustic measurements
acoustic signal analysis
Acoustic signal processing
Frequency estimation
Gaussian distributions
Harmonic analysis
Multiple signal classification
Music
Signal analysis
Signal generators
Spectral analysis
title Multiple fundamental frequency estimation using Gaussian smoothness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multiple%20fundamental%20frequency%20estimation%20using%20Gaussian%20smoothness&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Pertusa,%20A.&rft.date=2008-01-01&rft.spage=105&rft.epage=108&rft.pages=105-108&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424414833&rft.isbn_list=1424414830&rft_id=info:doi/10.1109/ICASSP.2008.4517557&rft.eisbn=1424414849&rft.eisbn_list=9781424414840&rft_dat=%3Cieee_6IE%3E4517557%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i220t-8a6ba2a5068a555710dd3405de1e8a0b6173831016814a786c7f4002abf2bbad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4517557&rfr_iscdi=true