Loading…
Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm
This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the fil...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 940 |
container_issue | |
container_start_page | 937 |
container_title | |
container_volume | |
creator | Khan, J.F. Adhami, R.R. Bhuiyan, S.M.A. |
description | This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the filter size. Brightness, color, texture and position features are extracted for each pixel and the joint distribution of these pixel features is modeled by a mixture of Gaussians. A new version of the expectation maximization (EM) algorithm called Penalized Inverse EM (PIEM) is formulated for estimating the parameters of the mixture of Gaussians model. Furthermore, we determine the number of models that best suits the image based on Schwarz criterion. The performance on the Berkeley segmentation benchmark proves the efficacy and accuracy of the proposed method. |
doi_str_mv | 10.1109/ICASSP.2008.4517765 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4517765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4517765</ieee_id><sourcerecordid>4517765</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-467e523255b1cc5bbb19e0c11573fa8c756496dfc56d95d759c1a7c02e6e1dfc3</originalsourceid><addsrcrecordid>eNo1UMlqwzAQVTdomuYLcvEPONVIGsk6ltANAi2kgZ4aZHniqsSOsZyQ5uvrknQu8zYG3jA2Bj4B4PbuZXo_n79NBOfZRCEYo_GM3YASSoHKlD1nAyGNTcHyjws2sib796S8ZANAwVMNyl6zUYzfvB-FEi0O2OeijtuG2l2IVCShciUlkcqK6s51YVMn2y6swyHUZdJQ7Xr4F6t31EZKaN-QP-Uqtw9VOByJW5ebNnRf1S27Wrl1pNFpD9ni8eF9-pzOXp_6UrM0gMEuVdoQCikQc_Ae8zwHS9wDoJErl3mDWlldrDzqwmJh0HpwxnNBmqCX5ZCNj3cDES2bti_S_ixPr5K_zlpcVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Khan, J.F. ; Adhami, R.R. ; Bhuiyan, S.M.A.</creator><creatorcontrib>Khan, J.F. ; Adhami, R.R. ; Bhuiyan, S.M.A.</creatorcontrib><description>This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the filter size. Brightness, color, texture and position features are extracted for each pixel and the joint distribution of these pixel features is modeled by a mixture of Gaussians. A new version of the expectation maximization (EM) algorithm called Penalized Inverse EM (PIEM) is formulated for estimating the parameters of the mixture of Gaussians model. Furthermore, we determine the number of models that best suits the image based on Schwarz criterion. The performance on the Berkeley segmentation benchmark proves the efficacy and accuracy of the proposed method.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424414833</identifier><identifier>ISBN: 1424414830</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1424414849</identifier><identifier>EISBN: 9781424414840</identifier><identifier>DOI: 10.1109/ICASSP.2008.4517765</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brightness ; Clustering ; Feature extraction ; Frequency measurement ; Gabor filters ; Gaussian distribution ; Image segmentation ; Parameter estimation ; Phase measurement ; Pixel ; Schwarz criterion ; segmentation ; Size measurement</subject><ispartof>2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.937-940</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4517765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4517765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, J.F.</creatorcontrib><creatorcontrib>Adhami, R.R.</creatorcontrib><creatorcontrib>Bhuiyan, S.M.A.</creatorcontrib><title>Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm</title><title>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the filter size. Brightness, color, texture and position features are extracted for each pixel and the joint distribution of these pixel features is modeled by a mixture of Gaussians. A new version of the expectation maximization (EM) algorithm called Penalized Inverse EM (PIEM) is formulated for estimating the parameters of the mixture of Gaussians model. Furthermore, we determine the number of models that best suits the image based on Schwarz criterion. The performance on the Berkeley segmentation benchmark proves the efficacy and accuracy of the proposed method.</description><subject>Brightness</subject><subject>Clustering</subject><subject>Feature extraction</subject><subject>Frequency measurement</subject><subject>Gabor filters</subject><subject>Gaussian distribution</subject><subject>Image segmentation</subject><subject>Parameter estimation</subject><subject>Phase measurement</subject><subject>Pixel</subject><subject>Schwarz criterion</subject><subject>segmentation</subject><subject>Size measurement</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424414833</isbn><isbn>1424414830</isbn><isbn>1424414849</isbn><isbn>9781424414840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UMlqwzAQVTdomuYLcvEPONVIGsk6ltANAi2kgZ4aZHniqsSOsZyQ5uvrknQu8zYG3jA2Bj4B4PbuZXo_n79NBOfZRCEYo_GM3YASSoHKlD1nAyGNTcHyjws2sib796S8ZANAwVMNyl6zUYzfvB-FEi0O2OeijtuG2l2IVCShciUlkcqK6s51YVMn2y6swyHUZdJQ7Xr4F6t31EZKaN-QP-Uqtw9VOByJW5ebNnRf1S27Wrl1pNFpD9ni8eF9-pzOXp_6UrM0gMEuVdoQCikQc_Ae8zwHS9wDoJErl3mDWlldrDzqwmJh0HpwxnNBmqCX5ZCNj3cDES2bti_S_ixPr5K_zlpcVA</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Khan, J.F.</creator><creator>Adhami, R.R.</creator><creator>Bhuiyan, S.M.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200803</creationdate><title>Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm</title><author>Khan, J.F. ; Adhami, R.R. ; Bhuiyan, S.M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-467e523255b1cc5bbb19e0c11573fa8c756496dfc56d95d759c1a7c02e6e1dfc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Brightness</topic><topic>Clustering</topic><topic>Feature extraction</topic><topic>Frequency measurement</topic><topic>Gabor filters</topic><topic>Gaussian distribution</topic><topic>Image segmentation</topic><topic>Parameter estimation</topic><topic>Phase measurement</topic><topic>Pixel</topic><topic>Schwarz criterion</topic><topic>segmentation</topic><topic>Size measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, J.F.</creatorcontrib><creatorcontrib>Adhami, R.R.</creatorcontrib><creatorcontrib>Bhuiyan, S.M.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, J.F.</au><au>Adhami, R.R.</au><au>Bhuiyan, S.M.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm</atitle><btitle>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2008-03</date><risdate>2008</risdate><spage>937</spage><epage>940</epage><pages>937-940</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424414833</isbn><isbn>1424414830</isbn><eisbn>1424414849</eisbn><eisbn>9781424414840</eisbn><abstract>This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the filter size. Brightness, color, texture and position features are extracted for each pixel and the joint distribution of these pixel features is modeled by a mixture of Gaussians. A new version of the expectation maximization (EM) algorithm called Penalized Inverse EM (PIEM) is formulated for estimating the parameters of the mixture of Gaussians model. Furthermore, we determine the number of models that best suits the image based on Schwarz criterion. The performance on the Berkeley segmentation benchmark proves the efficacy and accuracy of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2008.4517765</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.937-940 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_4517765 |
source | IEEE Xplore All Conference Series |
subjects | Brightness Clustering Feature extraction Frequency measurement Gabor filters Gaussian distribution Image segmentation Parameter estimation Phase measurement Pixel Schwarz criterion segmentation Size measurement |
title | Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20image%20segmentation%20utilizing%20penalized%20inverse%20expectation%20maximization%20algorithm&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Khan,%20J.F.&rft.date=2008-03&rft.spage=937&rft.epage=940&rft.pages=937-940&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424414833&rft.isbn_list=1424414830&rft_id=info:doi/10.1109/ICASSP.2008.4517765&rft.eisbn=1424414849&rft.eisbn_list=9781424414840&rft_dat=%3Cieee_CHZPO%3E4517765%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-467e523255b1cc5bbb19e0c11573fa8c756496dfc56d95d759c1a7c02e6e1dfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4517765&rfr_iscdi=true |