Loading…

Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm

This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the fil...

Full description

Saved in:
Bibliographic Details
Main Authors: Khan, J.F., Adhami, R.R., Bhuiyan, S.M.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 940
container_issue
container_start_page 937
container_title
container_volume
creator Khan, J.F.
Adhami, R.R.
Bhuiyan, S.M.A.
description This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the filter size. Brightness, color, texture and position features are extracted for each pixel and the joint distribution of these pixel features is modeled by a mixture of Gaussians. A new version of the expectation maximization (EM) algorithm called Penalized Inverse EM (PIEM) is formulated for estimating the parameters of the mixture of Gaussians model. Furthermore, we determine the number of models that best suits the image based on Schwarz criterion. The performance on the Berkeley segmentation benchmark proves the efficacy and accuracy of the proposed method.
doi_str_mv 10.1109/ICASSP.2008.4517765
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4517765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4517765</ieee_id><sourcerecordid>4517765</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-467e523255b1cc5bbb19e0c11573fa8c756496dfc56d95d759c1a7c02e6e1dfc3</originalsourceid><addsrcrecordid>eNo1UMlqwzAQVTdomuYLcvEPONVIGsk6ltANAi2kgZ4aZHniqsSOsZyQ5uvrknQu8zYG3jA2Bj4B4PbuZXo_n79NBOfZRCEYo_GM3YASSoHKlD1nAyGNTcHyjws2sib796S8ZANAwVMNyl6zUYzfvB-FEi0O2OeijtuG2l2IVCShciUlkcqK6s51YVMn2y6swyHUZdJQ7Xr4F6t31EZKaN-QP-Uqtw9VOByJW5ebNnRf1S27Wrl1pNFpD9ni8eF9-pzOXp_6UrM0gMEuVdoQCikQc_Ae8zwHS9wDoJErl3mDWlldrDzqwmJh0HpwxnNBmqCX5ZCNj3cDES2bti_S_ixPr5K_zlpcVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Khan, J.F. ; Adhami, R.R. ; Bhuiyan, S.M.A.</creator><creatorcontrib>Khan, J.F. ; Adhami, R.R. ; Bhuiyan, S.M.A.</creatorcontrib><description>This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the filter size. Brightness, color, texture and position features are extracted for each pixel and the joint distribution of these pixel features is modeled by a mixture of Gaussians. A new version of the expectation maximization (EM) algorithm called Penalized Inverse EM (PIEM) is formulated for estimating the parameters of the mixture of Gaussians model. Furthermore, we determine the number of models that best suits the image based on Schwarz criterion. The performance on the Berkeley segmentation benchmark proves the efficacy and accuracy of the proposed method.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424414833</identifier><identifier>ISBN: 1424414830</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1424414849</identifier><identifier>EISBN: 9781424414840</identifier><identifier>DOI: 10.1109/ICASSP.2008.4517765</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brightness ; Clustering ; Feature extraction ; Frequency measurement ; Gabor filters ; Gaussian distribution ; Image segmentation ; Parameter estimation ; Phase measurement ; Pixel ; Schwarz criterion ; segmentation ; Size measurement</subject><ispartof>2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.937-940</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4517765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4517765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, J.F.</creatorcontrib><creatorcontrib>Adhami, R.R.</creatorcontrib><creatorcontrib>Bhuiyan, S.M.A.</creatorcontrib><title>Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm</title><title>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the filter size. Brightness, color, texture and position features are extracted for each pixel and the joint distribution of these pixel features is modeled by a mixture of Gaussians. A new version of the expectation maximization (EM) algorithm called Penalized Inverse EM (PIEM) is formulated for estimating the parameters of the mixture of Gaussians model. Furthermore, we determine the number of models that best suits the image based on Schwarz criterion. The performance on the Berkeley segmentation benchmark proves the efficacy and accuracy of the proposed method.</description><subject>Brightness</subject><subject>Clustering</subject><subject>Feature extraction</subject><subject>Frequency measurement</subject><subject>Gabor filters</subject><subject>Gaussian distribution</subject><subject>Image segmentation</subject><subject>Parameter estimation</subject><subject>Phase measurement</subject><subject>Pixel</subject><subject>Schwarz criterion</subject><subject>segmentation</subject><subject>Size measurement</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424414833</isbn><isbn>1424414830</isbn><isbn>1424414849</isbn><isbn>9781424414840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UMlqwzAQVTdomuYLcvEPONVIGsk6ltANAi2kgZ4aZHniqsSOsZyQ5uvrknQu8zYG3jA2Bj4B4PbuZXo_n79NBOfZRCEYo_GM3YASSoHKlD1nAyGNTcHyjws2sib796S8ZANAwVMNyl6zUYzfvB-FEi0O2OeijtuG2l2IVCShciUlkcqK6s51YVMn2y6swyHUZdJQ7Xr4F6t31EZKaN-QP-Uqtw9VOByJW5ebNnRf1S27Wrl1pNFpD9ni8eF9-pzOXp_6UrM0gMEuVdoQCikQc_Ae8zwHS9wDoJErl3mDWlldrDzqwmJh0HpwxnNBmqCX5ZCNj3cDES2bti_S_ixPr5K_zlpcVA</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Khan, J.F.</creator><creator>Adhami, R.R.</creator><creator>Bhuiyan, S.M.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200803</creationdate><title>Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm</title><author>Khan, J.F. ; Adhami, R.R. ; Bhuiyan, S.M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-467e523255b1cc5bbb19e0c11573fa8c756496dfc56d95d759c1a7c02e6e1dfc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Brightness</topic><topic>Clustering</topic><topic>Feature extraction</topic><topic>Frequency measurement</topic><topic>Gabor filters</topic><topic>Gaussian distribution</topic><topic>Image segmentation</topic><topic>Parameter estimation</topic><topic>Phase measurement</topic><topic>Pixel</topic><topic>Schwarz criterion</topic><topic>segmentation</topic><topic>Size measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, J.F.</creatorcontrib><creatorcontrib>Adhami, R.R.</creatorcontrib><creatorcontrib>Bhuiyan, S.M.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, J.F.</au><au>Adhami, R.R.</au><au>Bhuiyan, S.M.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm</atitle><btitle>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2008-03</date><risdate>2008</risdate><spage>937</spage><epage>940</epage><pages>937-940</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424414833</isbn><isbn>1424414830</isbn><eisbn>1424414849</eisbn><eisbn>9781424414840</eisbn><abstract>This work is on accurate segmentation of images using local image characteristics. An appropriate Gabor filter with customized size, orientation, frequency and phase for each pixel is selected to measure the image features. A new image property called phase divergence is introduced to select the filter size. Brightness, color, texture and position features are extracted for each pixel and the joint distribution of these pixel features is modeled by a mixture of Gaussians. A new version of the expectation maximization (EM) algorithm called Penalized Inverse EM (PIEM) is formulated for estimating the parameters of the mixture of Gaussians model. Furthermore, we determine the number of models that best suits the image based on Schwarz criterion. The performance on the Berkeley segmentation benchmark proves the efficacy and accuracy of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2008.4517765</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.937-940
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4517765
source IEEE Xplore All Conference Series
subjects Brightness
Clustering
Feature extraction
Frequency measurement
Gabor filters
Gaussian distribution
Image segmentation
Parameter estimation
Phase measurement
Pixel
Schwarz criterion
segmentation
Size measurement
title Unsupervised image segmentation utilizing penalized inverse expectation maximization algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20image%20segmentation%20utilizing%20penalized%20inverse%20expectation%20maximization%20algorithm&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Khan,%20J.F.&rft.date=2008-03&rft.spage=937&rft.epage=940&rft.pages=937-940&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424414833&rft.isbn_list=1424414830&rft_id=info:doi/10.1109/ICASSP.2008.4517765&rft.eisbn=1424414849&rft.eisbn_list=9781424414840&rft_dat=%3Cieee_CHZPO%3E4517765%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-467e523255b1cc5bbb19e0c11573fa8c756496dfc56d95d759c1a7c02e6e1dfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4517765&rfr_iscdi=true