Loading…
Speech-based cognitive load monitoring system
Monitoring cognitive load is important for the prevention of faulty errors in task-critical operations, and the development of adaptive user interfaces, to maintain productivity and efficiency in work performance. Speech, as an objective and non-intrusive measure, is a suitable method for monitoring...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Monitoring cognitive load is important for the prevention of faulty errors in task-critical operations, and the development of adaptive user interfaces, to maintain productivity and efficiency in work performance. Speech, as an objective and non-intrusive measure, is a suitable method for monitoring cognitive load. Existing approaches for cognitive load monitoring are limited in speaker-dependent recognition and need manually labeled data. We propose a novel automatic, speaker-independent classification approach to monitor, in real-time, the person's cognitive load level by using speech features. In this approach, a Gaussian mixture model (GMM) based classifier is created with unsupervised training. Channel and speaker normalization are deployed for improving robustness. Different delta techniques are investigated for capturing temporal information. And a background model is introduced to reduce the impact of insufficient training data. The final system achieves 71.1% and 77.5% accuracy on two different tasks, each of which has three discrete cognitive load levels. This performance shows a great potential in real-world applications. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2008.4518041 |