Loading…

Combination of agglomerative and sequential clustering for speaker diarization

This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the agglomerative information bottleneck for very...

Full description

Saved in:
Bibliographic Details
Main Authors: Vijayasenan, D., Valente, F., Bourlard, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4364
container_issue
container_start_page 4361
container_title
container_volume
creator Vijayasenan, D.
Valente, F.
Bourlard, H.
description This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the agglomerative information bottleneck for very fast diarization. Here we consider the combination of sequential and agglomerative clustering for avoiding local maxima of the objective function and for purification. Experiments are run on the RT06 eval data. Sequential Clustering with oracle model selection can reduce the speaker error by 10% w.r.t. agglomerative clustering. When the model selection is based on Normalized Mutual Information criterion, a relative improvement of 5% is obtained using a combination of agglomerative and sequential clustering.
doi_str_mv 10.1109/ICASSP.2008.4518621
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4518621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4518621</ieee_id><sourcerecordid>4518621</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-11a3c08bac137badf6d8bf4af91f9f36d28fba32352420a7fdc415341e1c20cc3</originalsourceid><addsrcrecordid>eNo1kNtKxDAYhOMJrOs-wd7kBVrz59Aml1J0FRYVVsG75W-alGgPa9oV9OlddJ2bgRn4YIaQBbAMgJmr-_J6vX7KOGM6kwp0zuGIXIDkUoLU0hyThIvCpGDY6wmZm0L_d0KckgQUZ2kO0pyT-Ti-sb2kEsqohDyUQ1eFHqcw9HTwFJumHToX98Gno9jXdHQfO9dPAVtq2904uRj6hvoh0nHr8N1FWgeM4fsXcUnOPLajmx98Rl5ub57Lu3T1uNyPWKWBczalACgs0xVaEEWFtc9rXXmJ3oA3XuQ1175CwYXikjMsfG0lKCHBgeXMWjEjiz9ucM5ttjF0GL82h2vED85yVYI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combination of agglomerative and sequential clustering for speaker diarization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vijayasenan, D. ; Valente, F. ; Bourlard, H.</creator><creatorcontrib>Vijayasenan, D. ; Valente, F. ; Bourlard, H.</creatorcontrib><description>This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the agglomerative information bottleneck for very fast diarization. Here we consider the combination of sequential and agglomerative clustering for avoiding local maxima of the objective function and for purification. Experiments are run on the RT06 eval data. Sequential Clustering with oracle model selection can reduce the speaker error by 10% w.r.t. agglomerative clustering. When the model selection is based on Normalized Mutual Information criterion, a relative improvement of 5% is obtained using a combination of agglomerative and sequential clustering.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424414833</identifier><identifier>ISBN: 1424414830</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1424414849</identifier><identifier>EISBN: 9781424414840</identifier><identifier>DOI: 10.1109/ICASSP.2008.4518621</identifier><language>eng</language><publisher>IEEE</publisher><subject>agglomerative and sequential information bottleneck ; Bayesian methods ; Clustering algorithms ; Hidden Markov models ; Meetings data ; Mutual information ; Parameter estimation ; Parametric statistics ; Partitioning algorithms ; Purification ; Speaker Diarization ; Speech ; Streaming media</subject><ispartof>2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.4361-4364</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4518621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4518621$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vijayasenan, D.</creatorcontrib><creatorcontrib>Valente, F.</creatorcontrib><creatorcontrib>Bourlard, H.</creatorcontrib><title>Combination of agglomerative and sequential clustering for speaker diarization</title><title>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the agglomerative information bottleneck for very fast diarization. Here we consider the combination of sequential and agglomerative clustering for avoiding local maxima of the objective function and for purification. Experiments are run on the RT06 eval data. Sequential Clustering with oracle model selection can reduce the speaker error by 10% w.r.t. agglomerative clustering. When the model selection is based on Normalized Mutual Information criterion, a relative improvement of 5% is obtained using a combination of agglomerative and sequential clustering.</description><subject>agglomerative and sequential information bottleneck</subject><subject>Bayesian methods</subject><subject>Clustering algorithms</subject><subject>Hidden Markov models</subject><subject>Meetings data</subject><subject>Mutual information</subject><subject>Parameter estimation</subject><subject>Parametric statistics</subject><subject>Partitioning algorithms</subject><subject>Purification</subject><subject>Speaker Diarization</subject><subject>Speech</subject><subject>Streaming media</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424414833</isbn><isbn>1424414830</isbn><isbn>1424414849</isbn><isbn>9781424414840</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtKxDAYhOMJrOs-wd7kBVrz59Aml1J0FRYVVsG75W-alGgPa9oV9OlddJ2bgRn4YIaQBbAMgJmr-_J6vX7KOGM6kwp0zuGIXIDkUoLU0hyThIvCpGDY6wmZm0L_d0KckgQUZ2kO0pyT-Ti-sb2kEsqohDyUQ1eFHqcw9HTwFJumHToX98Gno9jXdHQfO9dPAVtq2904uRj6hvoh0nHr8N1FWgeM4fsXcUnOPLajmx98Rl5ub57Lu3T1uNyPWKWBczalACgs0xVaEEWFtc9rXXmJ3oA3XuQ1175CwYXikjMsfG0lKCHBgeXMWjEjiz9ucM5ttjF0GL82h2vED85yVYI</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Vijayasenan, D.</creator><creator>Valente, F.</creator><creator>Bourlard, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Combination of agglomerative and sequential clustering for speaker diarization</title><author>Vijayasenan, D. ; Valente, F. ; Bourlard, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-11a3c08bac137badf6d8bf4af91f9f36d28fba32352420a7fdc415341e1c20cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>agglomerative and sequential information bottleneck</topic><topic>Bayesian methods</topic><topic>Clustering algorithms</topic><topic>Hidden Markov models</topic><topic>Meetings data</topic><topic>Mutual information</topic><topic>Parameter estimation</topic><topic>Parametric statistics</topic><topic>Partitioning algorithms</topic><topic>Purification</topic><topic>Speaker Diarization</topic><topic>Speech</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Vijayasenan, D.</creatorcontrib><creatorcontrib>Valente, F.</creatorcontrib><creatorcontrib>Bourlard, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vijayasenan, D.</au><au>Valente, F.</au><au>Bourlard, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combination of agglomerative and sequential clustering for speaker diarization</atitle><btitle>2008 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>4361</spage><epage>4364</epage><pages>4361-4364</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424414833</isbn><isbn>1424414830</isbn><eisbn>1424414849</eisbn><eisbn>9781424414840</eisbn><abstract>This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the agglomerative information bottleneck for very fast diarization. Here we consider the combination of sequential and agglomerative clustering for avoiding local maxima of the objective function and for purification. Experiments are run on the RT06 eval data. Sequential Clustering with oracle model selection can reduce the speaker error by 10% w.r.t. agglomerative clustering. When the model selection is based on Normalized Mutual Information criterion, a relative improvement of 5% is obtained using a combination of agglomerative and sequential clustering.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2008.4518621</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, p.4361-4364
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4518621
source IEEE Electronic Library (IEL) Conference Proceedings
subjects agglomerative and sequential information bottleneck
Bayesian methods
Clustering algorithms
Hidden Markov models
Meetings data
Mutual information
Parameter estimation
Parametric statistics
Partitioning algorithms
Purification
Speaker Diarization
Speech
Streaming media
title Combination of agglomerative and sequential clustering for speaker diarization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combination%20of%20agglomerative%20and%20sequential%20clustering%20for%20speaker%20diarization&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Vijayasenan,%20D.&rft.date=2008-01-01&rft.spage=4361&rft.epage=4364&rft.pages=4361-4364&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424414833&rft.isbn_list=1424414830&rft_id=info:doi/10.1109/ICASSP.2008.4518621&rft.eisbn=1424414849&rft.eisbn_list=9781424414840&rft_dat=%3Cieee_6IE%3E4518621%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i220t-11a3c08bac137badf6d8bf4af91f9f36d28fba32352420a7fdc415341e1c20cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4518621&rfr_iscdi=true