Loading…
Unsupervised validity measures for vocalization clustering
This paper describes unsupervised speech/speaker cluster validity measures based on a dissimilarity metric, for the purpose of estimating the number of clusters in a speech data set as well as assessing the consistency of the clustering procedure. The number of clusters is estimated by minimizing th...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes unsupervised speech/speaker cluster validity measures based on a dissimilarity metric, for the purpose of estimating the number of clusters in a speech data set as well as assessing the consistency of the clustering procedure. The number of clusters is estimated by minimizing the cross-data dissimilarity values, while algorithm consistency is evaluated by calculating the dissimilarity values across multiple experimental runs. The method is demonstrated on the task of Beluga whale vocalization clustering. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2008.4518625 |