Loading…

Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning

The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The exper...

Full description

Saved in:
Bibliographic Details
Main Authors: Vizitiu, C.I., Radu, A., Oroian, T., Molder, C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 462
container_issue
container_start_page 459
container_title
container_volume 2
creator Vizitiu, C.I.
Radu, A.
Oroian, T.
Molder, C.
description The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The experimental results getting in this case are compared with ones from a classic pruning method, and for their validation a proper hardware implementation of the used networks is indicated.
doi_str_mv 10.1109/SMICND.2007.4519759
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4519759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4519759</ieee_id><sourcerecordid>4519759</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f5b2e086c718266fd3c03201a532d72d53c57e05bca95b20b2c3c5dff6fb0bef3</originalsourceid><addsrcrecordid>eNotkN1qwkAQhZf-QK31CbzZF4jd32xyKbZqwGqhFnonm-ysTZtkw2ZFfPsu1HNzYM43A3MQmlIyo5Tkzx9vxWL7MmOEqJmQNFcyv0EjxpVKSKqyW_RIBROCZEKJOzSiUsgkY-rrAU2G4YdE5YJSLkbI7fpQt7rBa-3NWXvARds30EIXdKhdh53FGi8BjHU-5gZv4eQjv4Vwdv4X713vGne84NNQd8fIrqCDUFd43hydr8N3i-MmfvenrovAE7q3uhlgcvUx-ly-7hfrZLNbFYv5JqmpkiGxsmRAsrRSNGNpag2vCGeEasmZUcxIXkkFRJaVziNKSlbFibE2tSUpwfIxmv7frQHg0Pv4o78crl3xP8ngXhM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vizitiu, C.I. ; Radu, A. ; Oroian, T. ; Molder, C.</creator><creatorcontrib>Vizitiu, C.I. ; Radu, A. ; Oroian, T. ; Molder, C.</creatorcontrib><description>The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The experimental results getting in this case are compared with ones from a classic pruning method, and for their validation a proper hardware implementation of the used networks is indicated.</description><identifier>ISSN: 1545-827X</identifier><identifier>ISBN: 1424408474</identifier><identifier>ISBN: 9781424408474</identifier><identifier>EISSN: 2377-0678</identifier><identifier>DOI: 10.1109/SMICND.2007.4519759</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Convergence ; Encoding ; Feedforward neural networks ; Genetic algorithms ; Network topology ; Neural network hardware ; Neural networks ; Neurons ; Optimization methods</subject><ispartof>2007 International Semiconductor Conference, 2007, Vol.2, p.459-462</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4519759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4519759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vizitiu, C.I.</creatorcontrib><creatorcontrib>Radu, A.</creatorcontrib><creatorcontrib>Oroian, T.</creatorcontrib><creatorcontrib>Molder, C.</creatorcontrib><title>Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning</title><title>2007 International Semiconductor Conference</title><addtitle>SMICND</addtitle><description>The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The experimental results getting in this case are compared with ones from a classic pruning method, and for their validation a proper hardware implementation of the used networks is indicated.</description><subject>Biological cells</subject><subject>Convergence</subject><subject>Encoding</subject><subject>Feedforward neural networks</subject><subject>Genetic algorithms</subject><subject>Network topology</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization methods</subject><issn>1545-827X</issn><issn>2377-0678</issn><isbn>1424408474</isbn><isbn>9781424408474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1qwkAQhZf-QK31CbzZF4jd32xyKbZqwGqhFnonm-ysTZtkw2ZFfPsu1HNzYM43A3MQmlIyo5Tkzx9vxWL7MmOEqJmQNFcyv0EjxpVKSKqyW_RIBROCZEKJOzSiUsgkY-rrAU2G4YdE5YJSLkbI7fpQt7rBa-3NWXvARds30EIXdKhdh53FGi8BjHU-5gZv4eQjv4Vwdv4X713vGne84NNQd8fIrqCDUFd43hydr8N3i-MmfvenrovAE7q3uhlgcvUx-ly-7hfrZLNbFYv5JqmpkiGxsmRAsrRSNGNpag2vCGeEasmZUcxIXkkFRJaVziNKSlbFibE2tSUpwfIxmv7frQHg0Pv4o78crl3xP8ngXhM</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Vizitiu, C.I.</creator><creator>Radu, A.</creator><creator>Oroian, T.</creator><creator>Molder, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning</title><author>Vizitiu, C.I. ; Radu, A. ; Oroian, T. ; Molder, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f5b2e086c718266fd3c03201a532d72d53c57e05bca95b20b2c3c5dff6fb0bef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological cells</topic><topic>Convergence</topic><topic>Encoding</topic><topic>Feedforward neural networks</topic><topic>Genetic algorithms</topic><topic>Network topology</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Vizitiu, C.I.</creatorcontrib><creatorcontrib>Radu, A.</creatorcontrib><creatorcontrib>Oroian, T.</creatorcontrib><creatorcontrib>Molder, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vizitiu, C.I.</au><au>Radu, A.</au><au>Oroian, T.</au><au>Molder, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning</atitle><btitle>2007 International Semiconductor Conference</btitle><stitle>SMICND</stitle><date>2007-10</date><risdate>2007</risdate><volume>2</volume><spage>459</spage><epage>462</epage><pages>459-462</pages><issn>1545-827X</issn><eissn>2377-0678</eissn><isbn>1424408474</isbn><isbn>9781424408474</isbn><abstract>The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The experimental results getting in this case are compared with ones from a classic pruning method, and for their validation a proper hardware implementation of the used networks is indicated.</abstract><pub>IEEE</pub><doi>10.1109/SMICND.2007.4519759</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-827X
ispartof 2007 International Semiconductor Conference, 2007, Vol.2, p.459-462
issn 1545-827X
2377-0678
language eng
recordid cdi_ieee_primary_4519759
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Convergence
Encoding
Feedforward neural networks
Genetic algorithms
Network topology
Neural network hardware
Neural networks
Neurons
Optimization methods
title Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Hardware%20Implementation%20of%20a%20Feedforward%20Neural%20Network%20Topology%20using%20a%20Genetic%20Algorithm%20for%20Prunning&rft.btitle=2007%20International%20Semiconductor%20Conference&rft.au=Vizitiu,%20C.I.&rft.date=2007-10&rft.volume=2&rft.spage=459&rft.epage=462&rft.pages=459-462&rft.issn=1545-827X&rft.eissn=2377-0678&rft.isbn=1424408474&rft.isbn_list=9781424408474&rft_id=info:doi/10.1109/SMICND.2007.4519759&rft_dat=%3Cieee_6IE%3E4519759%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f5b2e086c718266fd3c03201a532d72d53c57e05bca95b20b2c3c5dff6fb0bef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4519759&rfr_iscdi=true