Loading…
Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning
The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The exper...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 462 |
container_issue | |
container_start_page | 459 |
container_title | |
container_volume | 2 |
creator | Vizitiu, C.I. Radu, A. Oroian, T. Molder, C. |
description | The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The experimental results getting in this case are compared with ones from a classic pruning method, and for their validation a proper hardware implementation of the used networks is indicated. |
doi_str_mv | 10.1109/SMICND.2007.4519759 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4519759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4519759</ieee_id><sourcerecordid>4519759</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f5b2e086c718266fd3c03201a532d72d53c57e05bca95b20b2c3c5dff6fb0bef3</originalsourceid><addsrcrecordid>eNotkN1qwkAQhZf-QK31CbzZF4jd32xyKbZqwGqhFnonm-ysTZtkw2ZFfPsu1HNzYM43A3MQmlIyo5Tkzx9vxWL7MmOEqJmQNFcyv0EjxpVKSKqyW_RIBROCZEKJOzSiUsgkY-rrAU2G4YdE5YJSLkbI7fpQt7rBa-3NWXvARds30EIXdKhdh53FGi8BjHU-5gZv4eQjv4Vwdv4X713vGne84NNQd8fIrqCDUFd43hydr8N3i-MmfvenrovAE7q3uhlgcvUx-ly-7hfrZLNbFYv5JqmpkiGxsmRAsrRSNGNpag2vCGeEasmZUcxIXkkFRJaVziNKSlbFibE2tSUpwfIxmv7frQHg0Pv4o78crl3xP8ngXhM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vizitiu, C.I. ; Radu, A. ; Oroian, T. ; Molder, C.</creator><creatorcontrib>Vizitiu, C.I. ; Radu, A. ; Oroian, T. ; Molder, C.</creatorcontrib><description>The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The experimental results getting in this case are compared with ones from a classic pruning method, and for their validation a proper hardware implementation of the used networks is indicated.</description><identifier>ISSN: 1545-827X</identifier><identifier>ISBN: 1424408474</identifier><identifier>ISBN: 9781424408474</identifier><identifier>EISSN: 2377-0678</identifier><identifier>DOI: 10.1109/SMICND.2007.4519759</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Convergence ; Encoding ; Feedforward neural networks ; Genetic algorithms ; Network topology ; Neural network hardware ; Neural networks ; Neurons ; Optimization methods</subject><ispartof>2007 International Semiconductor Conference, 2007, Vol.2, p.459-462</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4519759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4519759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vizitiu, C.I.</creatorcontrib><creatorcontrib>Radu, A.</creatorcontrib><creatorcontrib>Oroian, T.</creatorcontrib><creatorcontrib>Molder, C.</creatorcontrib><title>Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning</title><title>2007 International Semiconductor Conference</title><addtitle>SMICND</addtitle><description>The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The experimental results getting in this case are compared with ones from a classic pruning method, and for their validation a proper hardware implementation of the used networks is indicated.</description><subject>Biological cells</subject><subject>Convergence</subject><subject>Encoding</subject><subject>Feedforward neural networks</subject><subject>Genetic algorithms</subject><subject>Network topology</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization methods</subject><issn>1545-827X</issn><issn>2377-0678</issn><isbn>1424408474</isbn><isbn>9781424408474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1qwkAQhZf-QK31CbzZF4jd32xyKbZqwGqhFnonm-ysTZtkw2ZFfPsu1HNzYM43A3MQmlIyo5Tkzx9vxWL7MmOEqJmQNFcyv0EjxpVKSKqyW_RIBROCZEKJOzSiUsgkY-rrAU2G4YdE5YJSLkbI7fpQt7rBa-3NWXvARds30EIXdKhdh53FGi8BjHU-5gZv4eQjv4Vwdv4X713vGne84NNQd8fIrqCDUFd43hydr8N3i-MmfvenrovAE7q3uhlgcvUx-ly-7hfrZLNbFYv5JqmpkiGxsmRAsrRSNGNpag2vCGeEasmZUcxIXkkFRJaVziNKSlbFibE2tSUpwfIxmv7frQHg0Pv4o78crl3xP8ngXhM</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Vizitiu, C.I.</creator><creator>Radu, A.</creator><creator>Oroian, T.</creator><creator>Molder, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning</title><author>Vizitiu, C.I. ; Radu, A. ; Oroian, T. ; Molder, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f5b2e086c718266fd3c03201a532d72d53c57e05bca95b20b2c3c5dff6fb0bef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological cells</topic><topic>Convergence</topic><topic>Encoding</topic><topic>Feedforward neural networks</topic><topic>Genetic algorithms</topic><topic>Network topology</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Vizitiu, C.I.</creatorcontrib><creatorcontrib>Radu, A.</creatorcontrib><creatorcontrib>Oroian, T.</creatorcontrib><creatorcontrib>Molder, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vizitiu, C.I.</au><au>Radu, A.</au><au>Oroian, T.</au><au>Molder, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning</atitle><btitle>2007 International Semiconductor Conference</btitle><stitle>SMICND</stitle><date>2007-10</date><risdate>2007</risdate><volume>2</volume><spage>459</spage><epage>462</epage><pages>459-462</pages><issn>1545-827X</issn><eissn>2377-0678</eissn><isbn>1424408474</isbn><isbn>9781424408474</isbn><abstract>The genetic algorithms are an important part of modern global searching methods class with specific applications in the complex optimization problems. This paper proposes an interesting approach of feedforward neural network topology optimization based on a new fitness function definition. The experimental results getting in this case are compared with ones from a classic pruning method, and for their validation a proper hardware implementation of the used networks is indicated.</abstract><pub>IEEE</pub><doi>10.1109/SMICND.2007.4519759</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-827X |
ispartof | 2007 International Semiconductor Conference, 2007, Vol.2, p.459-462 |
issn | 1545-827X 2377-0678 |
language | eng |
recordid | cdi_ieee_primary_4519759 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Convergence Encoding Feedforward neural networks Genetic algorithms Network topology Neural network hardware Neural networks Neurons Optimization methods |
title | Optimal Hardware Implementation of a Feedforward Neural Network Topology using a Genetic Algorithm for Prunning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Hardware%20Implementation%20of%20a%20Feedforward%20Neural%20Network%20Topology%20using%20a%20Genetic%20Algorithm%20for%20Prunning&rft.btitle=2007%20International%20Semiconductor%20Conference&rft.au=Vizitiu,%20C.I.&rft.date=2007-10&rft.volume=2&rft.spage=459&rft.epage=462&rft.pages=459-462&rft.issn=1545-827X&rft.eissn=2377-0678&rft.isbn=1424408474&rft.isbn_list=9781424408474&rft_id=info:doi/10.1109/SMICND.2007.4519759&rft_dat=%3Cieee_6IE%3E4519759%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f5b2e086c718266fd3c03201a532d72d53c57e05bca95b20b2c3c5dff6fb0bef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4519759&rfr_iscdi=true |