Loading…
An Adaptive LAN Intrusion Detection System Based on Computer Immunology
It is very useful to design adaptive LAN intrusion detection systems to improve the security of LANs. If a network connection links to an open port of an active host, it is defined as a normal one; otherwise, it is defined as an abnormal one. Rationality of the definitions is proved. Normal connecti...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2238 |
container_issue | |
container_start_page | 2234 |
container_title | |
container_volume | |
creator | Tie-Shan Zhao Zeng-Zhi Li Ze-Min Wang Xiao-Jun Lin |
description | It is very useful to design adaptive LAN intrusion detection systems to improve the security of LANs. If a network connection links to an open port of an active host, it is defined as a normal one; otherwise, it is defined as an abnormal one. Rationality of the definitions is proved. Normal connections are self-bodies. A correct and complete self-body set can be used for an antibody set. If a new network connection doesn't match any self-body, it is abnormal. An adaptive antibody generation model is presented firstly. Based on it, an adaptive intrusion detection system is introduced. Experiments show that the system is feasible: the detection rate of intruders' scans is 100%, of intruders' random probes is more than 98%, and there are no false alerts. |
doi_str_mv | 10.1109/ROBIO.2007.4522517 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4522517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4522517</ieee_id><sourcerecordid>4522517</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-91ac2df82b17a30c911e612a4268962e3e8b07b34b57b88c48f88a94ef4df71e3</originalsourceid><addsrcrecordid>eNo9UNtqhDAUTCkL7W73B9qX_IA2J0aTPLq2uxWkQi_PS9RjsawXTCz493Xp0nmZGRiGYQi5B-YDMP34lu_S3OeMSV-EnIcgr8gaBBcCZKj09b-JQK_I-hzUTEIU3ZCttd9sgQgFCHVLDnFH48oMrvlBmsWvNO3cONmm7-gTOizdWb3P1mFLd8ZiRRef9O0wORxp2rZT15_6r_mOrGpzsri98IZ87p8_khcvyw9pEmdes0xzngZT8qpWvABpAlZqAIyAG8EjpSOOAaqCySIQRSgLpUqhaqWMFliLqpaAwYY8_PU2iHgcxqY143y8vBD8ApuFTeo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Adaptive LAN Intrusion Detection System Based on Computer Immunology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tie-Shan Zhao ; Zeng-Zhi Li ; Ze-Min Wang ; Xiao-Jun Lin</creator><creatorcontrib>Tie-Shan Zhao ; Zeng-Zhi Li ; Ze-Min Wang ; Xiao-Jun Lin</creatorcontrib><description>It is very useful to design adaptive LAN intrusion detection systems to improve the security of LANs. If a network connection links to an open port of an active host, it is defined as a normal one; otherwise, it is defined as an abnormal one. Rationality of the definitions is proved. Normal connections are self-bodies. A correct and complete self-body set can be used for an antibody set. If a new network connection doesn't match any self-body, it is abnormal. An adaptive antibody generation model is presented firstly. Based on it, an adaptive intrusion detection system is introduced. Experiments show that the system is feasible: the detection rate of intruders' scans is 100%, of intruders' random probes is more than 98%, and there are no false alerts.</description><identifier>ISBN: 1424417619</identifier><identifier>ISBN: 9781424417612</identifier><identifier>EISBN: 1424417589</identifier><identifier>EISBN: 9781424417582</identifier><identifier>DOI: 10.1109/ROBIO.2007.4522517</identifier><identifier>LCCN: 2007907166</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive ; Biological system modeling ; Biology computing ; Computational modeling ; Computer immunology ; Computer networks ; Computer security ; Correct and complete self-body set ; Educational institutions ; Immune system ; Internet ; Intrusion detection ; Intrusion detection system ; Local area networks</subject><ispartof>2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2007, p.2234-2238</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4522517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4522517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tie-Shan Zhao</creatorcontrib><creatorcontrib>Zeng-Zhi Li</creatorcontrib><creatorcontrib>Ze-Min Wang</creatorcontrib><creatorcontrib>Xiao-Jun Lin</creatorcontrib><title>An Adaptive LAN Intrusion Detection System Based on Computer Immunology</title><title>2007 IEEE International Conference on Robotics and Biomimetics (ROBIO)</title><addtitle>ROBIO</addtitle><description>It is very useful to design adaptive LAN intrusion detection systems to improve the security of LANs. If a network connection links to an open port of an active host, it is defined as a normal one; otherwise, it is defined as an abnormal one. Rationality of the definitions is proved. Normal connections are self-bodies. A correct and complete self-body set can be used for an antibody set. If a new network connection doesn't match any self-body, it is abnormal. An adaptive antibody generation model is presented firstly. Based on it, an adaptive intrusion detection system is introduced. Experiments show that the system is feasible: the detection rate of intruders' scans is 100%, of intruders' random probes is more than 98%, and there are no false alerts.</description><subject>Adaptive</subject><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>Computational modeling</subject><subject>Computer immunology</subject><subject>Computer networks</subject><subject>Computer security</subject><subject>Correct and complete self-body set</subject><subject>Educational institutions</subject><subject>Immune system</subject><subject>Internet</subject><subject>Intrusion detection</subject><subject>Intrusion detection system</subject><subject>Local area networks</subject><isbn>1424417619</isbn><isbn>9781424417612</isbn><isbn>1424417589</isbn><isbn>9781424417582</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UNtqhDAUTCkL7W73B9qX_IA2J0aTPLq2uxWkQi_PS9RjsawXTCz493Xp0nmZGRiGYQi5B-YDMP34lu_S3OeMSV-EnIcgr8gaBBcCZKj09b-JQK_I-hzUTEIU3ZCttd9sgQgFCHVLDnFH48oMrvlBmsWvNO3cONmm7-gTOizdWb3P1mFLd8ZiRRef9O0wORxp2rZT15_6r_mOrGpzsri98IZ87p8_khcvyw9pEmdes0xzngZT8qpWvABpAlZqAIyAG8EjpSOOAaqCySIQRSgLpUqhaqWMFliLqpaAwYY8_PU2iHgcxqY143y8vBD8ApuFTeo</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Tie-Shan Zhao</creator><creator>Zeng-Zhi Li</creator><creator>Ze-Min Wang</creator><creator>Xiao-Jun Lin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200712</creationdate><title>An Adaptive LAN Intrusion Detection System Based on Computer Immunology</title><author>Tie-Shan Zhao ; Zeng-Zhi Li ; Ze-Min Wang ; Xiao-Jun Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-91ac2df82b17a30c911e612a4268962e3e8b07b34b57b88c48f88a94ef4df71e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive</topic><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>Computational modeling</topic><topic>Computer immunology</topic><topic>Computer networks</topic><topic>Computer security</topic><topic>Correct and complete self-body set</topic><topic>Educational institutions</topic><topic>Immune system</topic><topic>Internet</topic><topic>Intrusion detection</topic><topic>Intrusion detection system</topic><topic>Local area networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Tie-Shan Zhao</creatorcontrib><creatorcontrib>Zeng-Zhi Li</creatorcontrib><creatorcontrib>Ze-Min Wang</creatorcontrib><creatorcontrib>Xiao-Jun Lin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tie-Shan Zhao</au><au>Zeng-Zhi Li</au><au>Ze-Min Wang</au><au>Xiao-Jun Lin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Adaptive LAN Intrusion Detection System Based on Computer Immunology</atitle><btitle>2007 IEEE International Conference on Robotics and Biomimetics (ROBIO)</btitle><stitle>ROBIO</stitle><date>2007-12</date><risdate>2007</risdate><spage>2234</spage><epage>2238</epage><pages>2234-2238</pages><isbn>1424417619</isbn><isbn>9781424417612</isbn><eisbn>1424417589</eisbn><eisbn>9781424417582</eisbn><abstract>It is very useful to design adaptive LAN intrusion detection systems to improve the security of LANs. If a network connection links to an open port of an active host, it is defined as a normal one; otherwise, it is defined as an abnormal one. Rationality of the definitions is proved. Normal connections are self-bodies. A correct and complete self-body set can be used for an antibody set. If a new network connection doesn't match any self-body, it is abnormal. An adaptive antibody generation model is presented firstly. Based on it, an adaptive intrusion detection system is introduced. Experiments show that the system is feasible: the detection rate of intruders' scans is 100%, of intruders' random probes is more than 98%, and there are no false alerts.</abstract><pub>IEEE</pub><doi>10.1109/ROBIO.2007.4522517</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424417619 |
ispartof | 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2007, p.2234-2238 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4522517 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive Biological system modeling Biology computing Computational modeling Computer immunology Computer networks Computer security Correct and complete self-body set Educational institutions Immune system Internet Intrusion detection Intrusion detection system Local area networks |
title | An Adaptive LAN Intrusion Detection System Based on Computer Immunology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Adaptive%20LAN%20Intrusion%20Detection%20System%20Based%20on%20Computer%20Immunology&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Robotics%20and%20Biomimetics%20(ROBIO)&rft.au=Tie-Shan%20Zhao&rft.date=2007-12&rft.spage=2234&rft.epage=2238&rft.pages=2234-2238&rft.isbn=1424417619&rft.isbn_list=9781424417612&rft_id=info:doi/10.1109/ROBIO.2007.4522517&rft.eisbn=1424417589&rft.eisbn_list=9781424417582&rft_dat=%3Cieee_6IE%3E4522517%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-91ac2df82b17a30c911e612a4268962e3e8b07b34b57b88c48f88a94ef4df71e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4522517&rfr_iscdi=true |