Loading…
A 60nm 6Gb/s/pin GDDR5 Graphics DRAM with Multifaceted Clocking and ISI/SSN-Reduction Techniques
Demand for high-speed DRAM in graphics application pushes a single-ended I/O signaling to operate up to 6Gb/s. To maintain the speed increase, the GDDR5 specification shifts from GDDR3/4 with respect to forwarded clocking, data training for write and read de-skewing, clock training, channel-error de...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Demand for high-speed DRAM in graphics application pushes a single-ended I/O signaling to operate up to 6Gb/s. To maintain the speed increase, the GDDR5 specification shifts from GDDR3/4 with respect to forwarded clocking, data training for write and read de-skewing, clock training, channel-error detection, bank group and data coding. This work tackles challenges in GDDR5 such as clock jitter and signal integrity. |
---|---|
ISSN: | 0193-6530 2376-8606 |
DOI: | 10.1109/ISSCC.2008.4523165 |