Loading…
Continuous Time State Space Model Identification Using Closed-Loop Data
This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems wher...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 817 |
container_issue | |
container_start_page | 812 |
container_title | |
container_volume | |
creator | Mohd-Mokhtar, R. Liuping Wang |
description | This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems where the Laguerre filters are used in the identification procedure. Furthermore, to meet the requirement for continuous time model and to remain filter causality, the choice of instrumental variable is based on the future horizon variables. Monte-Carlo simulation results are presented to verify the consistency of the estimated models. |
doi_str_mv | 10.1109/AMS.2008.93 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4530580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4530580</ieee_id><sourcerecordid>4530580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-60764e9e5775224549d0f893e64bfd3064114bc55f1da67c2482e0bbde9257633</originalsourceid><addsrcrecordid>eNotjr1OwzAURo1EJUrJxMjiF0i4_o_HKkBbKRVDw1w58Q2ylMZRnQ68PZFg-b7l6OgQ8sygYAzs6_Z4KjhAWVhxRzJrSjDaKsGE1vdkzYXROWNarsjjQhkrhTbwQLKUQgsCQIsFXJNdFcc5jLd4S7QJF6Sn2c3LTq5DeoweB3rwuCB96Nwc4ki_Uhi_aTXEhD6vY5zom5vdE1n1bkiY_f-GNB_vTbXP68_dodrWebAw53pplGhRGaM4l0paD31pBWrZ9l6AlozJtlOqZ95p03FZcoS29Wi5Mkvyhrz8aQMinqdruLjrz1kqAaoE8QsS8kvm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Continuous Time State Space Model Identification Using Closed-Loop Data</title><source>IEEE Xplore All Conference Series</source><creator>Mohd-Mokhtar, R. ; Liuping Wang</creator><creatorcontrib>Mohd-Mokhtar, R. ; Liuping Wang</creatorcontrib><description>This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems where the Laguerre filters are used in the identification procedure. Furthermore, to meet the requirement for continuous time model and to remain filter causality, the choice of instrumental variable is based on the future horizon variables. Monte-Carlo simulation results are presented to verify the consistency of the estimated models.</description><identifier>ISSN: 2376-1164</identifier><identifier>EISBN: 9780769531366</identifier><identifier>EISBN: 0769531369</identifier><identifier>DOI: 10.1109/AMS.2008.93</identifier><identifier>LCCN: 2007943670</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Closed loop systems ; closed-loop system ; continuous time ; Continuous time systems ; Data engineering ; Filters ; Iterative algorithms ; Mathematical model ; Predictive models ; State-space methods ; state-space model ; System identification</subject><ispartof>2008 Second Asia International Conference on Modelling & Simulation (AMS), 2008, p.812-817</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4530580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4530580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohd-Mokhtar, R.</creatorcontrib><creatorcontrib>Liuping Wang</creatorcontrib><title>Continuous Time State Space Model Identification Using Closed-Loop Data</title><title>2008 Second Asia International Conference on Modelling & Simulation (AMS)</title><addtitle>AICMS</addtitle><description>This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems where the Laguerre filters are used in the identification procedure. Furthermore, to meet the requirement for continuous time model and to remain filter causality, the choice of instrumental variable is based on the future horizon variables. Monte-Carlo simulation results are presented to verify the consistency of the estimated models.</description><subject>Australia</subject><subject>Closed loop systems</subject><subject>closed-loop system</subject><subject>continuous time</subject><subject>Continuous time systems</subject><subject>Data engineering</subject><subject>Filters</subject><subject>Iterative algorithms</subject><subject>Mathematical model</subject><subject>Predictive models</subject><subject>State-space methods</subject><subject>state-space model</subject><subject>System identification</subject><issn>2376-1164</issn><isbn>9780769531366</isbn><isbn>0769531369</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjr1OwzAURo1EJUrJxMjiF0i4_o_HKkBbKRVDw1w58Q2ylMZRnQ68PZFg-b7l6OgQ8sygYAzs6_Z4KjhAWVhxRzJrSjDaKsGE1vdkzYXROWNarsjjQhkrhTbwQLKUQgsCQIsFXJNdFcc5jLd4S7QJF6Sn2c3LTq5DeoweB3rwuCB96Nwc4ki_Uhi_aTXEhD6vY5zom5vdE1n1bkiY_f-GNB_vTbXP68_dodrWebAw53pplGhRGaM4l0paD31pBWrZ9l6AlozJtlOqZ95p03FZcoS29Wi5Mkvyhrz8aQMinqdruLjrz1kqAaoE8QsS8kvm</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Mohd-Mokhtar, R.</creator><creator>Liuping Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Continuous Time State Space Model Identification Using Closed-Loop Data</title><author>Mohd-Mokhtar, R. ; Liuping Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-60764e9e5775224549d0f893e64bfd3064114bc55f1da67c2482e0bbde9257633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Australia</topic><topic>Closed loop systems</topic><topic>closed-loop system</topic><topic>continuous time</topic><topic>Continuous time systems</topic><topic>Data engineering</topic><topic>Filters</topic><topic>Iterative algorithms</topic><topic>Mathematical model</topic><topic>Predictive models</topic><topic>State-space methods</topic><topic>state-space model</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohd-Mokhtar, R.</creatorcontrib><creatorcontrib>Liuping Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohd-Mokhtar, R.</au><au>Liuping Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Continuous Time State Space Model Identification Using Closed-Loop Data</atitle><btitle>2008 Second Asia International Conference on Modelling & Simulation (AMS)</btitle><stitle>AICMS</stitle><date>2008-05</date><risdate>2008</risdate><spage>812</spage><epage>817</epage><pages>812-817</pages><issn>2376-1164</issn><eisbn>9780769531366</eisbn><eisbn>0769531369</eisbn><abstract>This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems where the Laguerre filters are used in the identification procedure. Furthermore, to meet the requirement for continuous time model and to remain filter causality, the choice of instrumental variable is based on the future horizon variables. Monte-Carlo simulation results are presented to verify the consistency of the estimated models.</abstract><pub>IEEE</pub><doi>10.1109/AMS.2008.93</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2376-1164 |
ispartof | 2008 Second Asia International Conference on Modelling & Simulation (AMS), 2008, p.812-817 |
issn | 2376-1164 |
language | eng |
recordid | cdi_ieee_primary_4530580 |
source | IEEE Xplore All Conference Series |
subjects | Australia Closed loop systems closed-loop system continuous time Continuous time systems Data engineering Filters Iterative algorithms Mathematical model Predictive models State-space methods state-space model System identification |
title | Continuous Time State Space Model Identification Using Closed-Loop Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Continuous%20Time%20State%20Space%20Model%20Identification%20Using%20Closed-Loop%20Data&rft.btitle=2008%20Second%20Asia%20International%20Conference%20on%20Modelling%20&%20Simulation%20(AMS)&rft.au=Mohd-Mokhtar,%20R.&rft.date=2008-05&rft.spage=812&rft.epage=817&rft.pages=812-817&rft.issn=2376-1164&rft_id=info:doi/10.1109/AMS.2008.93&rft.eisbn=9780769531366&rft.eisbn_list=0769531369&rft_dat=%3Cieee_CHZPO%3E4530580%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-60764e9e5775224549d0f893e64bfd3064114bc55f1da67c2482e0bbde9257633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4530580&rfr_iscdi=true |