Loading…

Continuous Time State Space Model Identification Using Closed-Loop Data

This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems wher...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd-Mokhtar, R., Liuping Wang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 817
container_issue
container_start_page 812
container_title
container_volume
creator Mohd-Mokhtar, R.
Liuping Wang
description This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems where the Laguerre filters are used in the identification procedure. Furthermore, to meet the requirement for continuous time model and to remain filter causality, the choice of instrumental variable is based on the future horizon variables. Monte-Carlo simulation results are presented to verify the consistency of the estimated models.
doi_str_mv 10.1109/AMS.2008.93
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4530580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4530580</ieee_id><sourcerecordid>4530580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-60764e9e5775224549d0f893e64bfd3064114bc55f1da67c2482e0bbde9257633</originalsourceid><addsrcrecordid>eNotjr1OwzAURo1EJUrJxMjiF0i4_o_HKkBbKRVDw1w58Q2ylMZRnQ68PZFg-b7l6OgQ8sygYAzs6_Z4KjhAWVhxRzJrSjDaKsGE1vdkzYXROWNarsjjQhkrhTbwQLKUQgsCQIsFXJNdFcc5jLd4S7QJF6Sn2c3LTq5DeoweB3rwuCB96Nwc4ki_Uhi_aTXEhD6vY5zom5vdE1n1bkiY_f-GNB_vTbXP68_dodrWebAw53pplGhRGaM4l0paD31pBWrZ9l6AlozJtlOqZ95p03FZcoS29Wi5Mkvyhrz8aQMinqdruLjrz1kqAaoE8QsS8kvm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Continuous Time State Space Model Identification Using Closed-Loop Data</title><source>IEEE Xplore All Conference Series</source><creator>Mohd-Mokhtar, R. ; Liuping Wang</creator><creatorcontrib>Mohd-Mokhtar, R. ; Liuping Wang</creatorcontrib><description>This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems where the Laguerre filters are used in the identification procedure. Furthermore, to meet the requirement for continuous time model and to remain filter causality, the choice of instrumental variable is based on the future horizon variables. Monte-Carlo simulation results are presented to verify the consistency of the estimated models.</description><identifier>ISSN: 2376-1164</identifier><identifier>EISBN: 9780769531366</identifier><identifier>EISBN: 0769531369</identifier><identifier>DOI: 10.1109/AMS.2008.93</identifier><identifier>LCCN: 2007943670</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Closed loop systems ; closed-loop system ; continuous time ; Continuous time systems ; Data engineering ; Filters ; Iterative algorithms ; Mathematical model ; Predictive models ; State-space methods ; state-space model ; System identification</subject><ispartof>2008 Second Asia International Conference on Modelling &amp; Simulation (AMS), 2008, p.812-817</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4530580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4530580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohd-Mokhtar, R.</creatorcontrib><creatorcontrib>Liuping Wang</creatorcontrib><title>Continuous Time State Space Model Identification Using Closed-Loop Data</title><title>2008 Second Asia International Conference on Modelling &amp; Simulation (AMS)</title><addtitle>AICMS</addtitle><description>This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems where the Laguerre filters are used in the identification procedure. Furthermore, to meet the requirement for continuous time model and to remain filter causality, the choice of instrumental variable is based on the future horizon variables. Monte-Carlo simulation results are presented to verify the consistency of the estimated models.</description><subject>Australia</subject><subject>Closed loop systems</subject><subject>closed-loop system</subject><subject>continuous time</subject><subject>Continuous time systems</subject><subject>Data engineering</subject><subject>Filters</subject><subject>Iterative algorithms</subject><subject>Mathematical model</subject><subject>Predictive models</subject><subject>State-space methods</subject><subject>state-space model</subject><subject>System identification</subject><issn>2376-1164</issn><isbn>9780769531366</isbn><isbn>0769531369</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjr1OwzAURo1EJUrJxMjiF0i4_o_HKkBbKRVDw1w58Q2ylMZRnQ68PZFg-b7l6OgQ8sygYAzs6_Z4KjhAWVhxRzJrSjDaKsGE1vdkzYXROWNarsjjQhkrhTbwQLKUQgsCQIsFXJNdFcc5jLd4S7QJF6Sn2c3LTq5DeoweB3rwuCB96Nwc4ki_Uhi_aTXEhD6vY5zom5vdE1n1bkiY_f-GNB_vTbXP68_dodrWebAw53pplGhRGaM4l0paD31pBWrZ9l6AlozJtlOqZ95p03FZcoS29Wi5Mkvyhrz8aQMinqdruLjrz1kqAaoE8QsS8kvm</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Mohd-Mokhtar, R.</creator><creator>Liuping Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Continuous Time State Space Model Identification Using Closed-Loop Data</title><author>Mohd-Mokhtar, R. ; Liuping Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-60764e9e5775224549d0f893e64bfd3064114bc55f1da67c2482e0bbde9257633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Australia</topic><topic>Closed loop systems</topic><topic>closed-loop system</topic><topic>continuous time</topic><topic>Continuous time systems</topic><topic>Data engineering</topic><topic>Filters</topic><topic>Iterative algorithms</topic><topic>Mathematical model</topic><topic>Predictive models</topic><topic>State-space methods</topic><topic>state-space model</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohd-Mokhtar, R.</creatorcontrib><creatorcontrib>Liuping Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohd-Mokhtar, R.</au><au>Liuping Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Continuous Time State Space Model Identification Using Closed-Loop Data</atitle><btitle>2008 Second Asia International Conference on Modelling &amp; Simulation (AMS)</btitle><stitle>AICMS</stitle><date>2008-05</date><risdate>2008</risdate><spage>812</spage><epage>817</epage><pages>812-817</pages><issn>2376-1164</issn><eisbn>9780769531366</eisbn><eisbn>0769531369</eisbn><abstract>This paper focuses on identifying a continuous time state space model for a system operating in closed-loop, using a subspace method based on error-in-variables (EIV) models. The proposed approach in this paper extends the existing methods in the discrete-time systems to continuous-time systems where the Laguerre filters are used in the identification procedure. Furthermore, to meet the requirement for continuous time model and to remain filter causality, the choice of instrumental variable is based on the future horizon variables. Monte-Carlo simulation results are presented to verify the consistency of the estimated models.</abstract><pub>IEEE</pub><doi>10.1109/AMS.2008.93</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2376-1164
ispartof 2008 Second Asia International Conference on Modelling & Simulation (AMS), 2008, p.812-817
issn 2376-1164
language eng
recordid cdi_ieee_primary_4530580
source IEEE Xplore All Conference Series
subjects Australia
Closed loop systems
closed-loop system
continuous time
Continuous time systems
Data engineering
Filters
Iterative algorithms
Mathematical model
Predictive models
State-space methods
state-space model
System identification
title Continuous Time State Space Model Identification Using Closed-Loop Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Continuous%20Time%20State%20Space%20Model%20Identification%20Using%20Closed-Loop%20Data&rft.btitle=2008%20Second%20Asia%20International%20Conference%20on%20Modelling%20&%20Simulation%20(AMS)&rft.au=Mohd-Mokhtar,%20R.&rft.date=2008-05&rft.spage=812&rft.epage=817&rft.pages=812-817&rft.issn=2376-1164&rft_id=info:doi/10.1109/AMS.2008.93&rft.eisbn=9780769531366&rft.eisbn_list=0769531369&rft_dat=%3Cieee_CHZPO%3E4530580%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-60764e9e5775224549d0f893e64bfd3064114bc55f1da67c2482e0bbde9257633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4530580&rfr_iscdi=true