Loading…

Genetic Type-2 Fuzzy Classifier Functions

A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifi...

Full description

Saved in:
Bibliographic Details
Main Authors: Celikyilmaz, A., Turksen, I.B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Celikyilmaz, A.
Turksen, I.B.
description A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure.
doi_str_mv 10.1109/NAFIPS.2008.4531221
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4531221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4531221</ieee_id><sourcerecordid>4531221</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9ba01c08cd53ab3ff2ff5c799cf9e45ad3945412f0fd764048ee7858a1381a5d3</originalsourceid><addsrcrecordid>eNpVT8FKw0AUXJGCWvMFveTqIXHf27dm91iCaQtFBXMv281bWKmxZOOh_Xoj9uJchhmGYUaIBcgSQNrHl2WzeXsvUUpTklaACFcis5UBQiJUGuH6nwaaibvfuJVotLkRWUofcgKR1oC34mHFPY_R5-3pyAXmzff5fMrrg0sphsjDZPR-jF99uhez4A6JswvPRds8t_W62L6uNvVyW0Qrx8LunQQvje-0cnsVAoagfWWtD5ZJu05Z0gQYZOiqJ5JkmKtpmQNlwOlOzcXirzYy8-44xE83nHaXs-oHJHpEjg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic Type-2 Fuzzy Classifier Functions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Celikyilmaz, A. ; Turksen, I.B.</creator><creatorcontrib>Celikyilmaz, A. ; Turksen, I.B.</creatorcontrib><description>A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure.</description><identifier>ISBN: 9781424423514</identifier><identifier>ISBN: 1424423511</identifier><identifier>EISBN: 9781424423521</identifier><identifier>EISBN: 142442352X</identifier><identifier>DOI: 10.1109/NAFIPS.2008.4531221</identifier><identifier>LCCN: 2008902858</identifier><language>eng</language><publisher>IEEE</publisher><subject>Area measurement ; classification ; Classification algorithms ; Clustering algorithms ; Educational institutions ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Industrial engineering ; Shape ; type-2 fuzzy functions ; Uncertainty</subject><ispartof>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4531221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4531221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Celikyilmaz, A.</creatorcontrib><creatorcontrib>Turksen, I.B.</creatorcontrib><title>Genetic Type-2 Fuzzy Classifier Functions</title><title>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society</title><addtitle>NAFIPS</addtitle><description>A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure.</description><subject>Area measurement</subject><subject>classification</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Educational institutions</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Industrial engineering</subject><subject>Shape</subject><subject>type-2 fuzzy functions</subject><subject>Uncertainty</subject><isbn>9781424423514</isbn><isbn>1424423511</isbn><isbn>9781424423521</isbn><isbn>142442352X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVT8FKw0AUXJGCWvMFveTqIXHf27dm91iCaQtFBXMv281bWKmxZOOh_Xoj9uJchhmGYUaIBcgSQNrHl2WzeXsvUUpTklaACFcis5UBQiJUGuH6nwaaibvfuJVotLkRWUofcgKR1oC34mHFPY_R5-3pyAXmzff5fMrrg0sphsjDZPR-jF99uhez4A6JswvPRds8t_W62L6uNvVyW0Qrx8LunQQvje-0cnsVAoagfWWtD5ZJu05Z0gQYZOiqJ5JkmKtpmQNlwOlOzcXirzYy8-44xE83nHaXs-oHJHpEjg</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Celikyilmaz, A.</creator><creator>Turksen, I.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Genetic Type-2 Fuzzy Classifier Functions</title><author>Celikyilmaz, A. ; Turksen, I.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9ba01c08cd53ab3ff2ff5c799cf9e45ad3945412f0fd764048ee7858a1381a5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Area measurement</topic><topic>classification</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Educational institutions</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Industrial engineering</topic><topic>Shape</topic><topic>type-2 fuzzy functions</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Celikyilmaz, A.</creatorcontrib><creatorcontrib>Turksen, I.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Celikyilmaz, A.</au><au>Turksen, I.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic Type-2 Fuzzy Classifier Functions</atitle><btitle>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society</btitle><stitle>NAFIPS</stitle><date>2008-05</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424423514</isbn><isbn>1424423511</isbn><eisbn>9781424423521</eisbn><eisbn>142442352X</eisbn><abstract>A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure.</abstract><pub>IEEE</pub><doi>10.1109/NAFIPS.2008.4531221</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424423514
ispartof NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008, p.1-6
issn
language eng
recordid cdi_ieee_primary_4531221
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Area measurement
classification
Classification algorithms
Clustering algorithms
Educational institutions
Fuzzy sets
Fuzzy systems
Genetic algorithms
Industrial engineering
Shape
type-2 fuzzy functions
Uncertainty
title Genetic Type-2 Fuzzy Classifier Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20Type-2%20Fuzzy%20Classifier%20Functions&rft.btitle=NAFIPS%202008%20-%202008%20Annual%20Meeting%20of%20the%20North%20American%20Fuzzy%20Information%20Processing%20Society&rft.au=Celikyilmaz,%20A.&rft.date=2008-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424423514&rft.isbn_list=1424423511&rft_id=info:doi/10.1109/NAFIPS.2008.4531221&rft.eisbn=9781424423521&rft.eisbn_list=142442352X&rft_dat=%3Cieee_6IE%3E4531221%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-9ba01c08cd53ab3ff2ff5c799cf9e45ad3945412f0fd764048ee7858a1381a5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4531221&rfr_iscdi=true