Loading…
Genetic Type-2 Fuzzy Classifier Functions
A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifi...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Celikyilmaz, A. Turksen, I.B. |
description | A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure. |
doi_str_mv | 10.1109/NAFIPS.2008.4531221 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4531221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4531221</ieee_id><sourcerecordid>4531221</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9ba01c08cd53ab3ff2ff5c799cf9e45ad3945412f0fd764048ee7858a1381a5d3</originalsourceid><addsrcrecordid>eNpVT8FKw0AUXJGCWvMFveTqIXHf27dm91iCaQtFBXMv281bWKmxZOOh_Xoj9uJchhmGYUaIBcgSQNrHl2WzeXsvUUpTklaACFcis5UBQiJUGuH6nwaaibvfuJVotLkRWUofcgKR1oC34mHFPY_R5-3pyAXmzff5fMrrg0sphsjDZPR-jF99uhez4A6JswvPRds8t_W62L6uNvVyW0Qrx8LunQQvje-0cnsVAoagfWWtD5ZJu05Z0gQYZOiqJ5JkmKtpmQNlwOlOzcXirzYy8-44xE83nHaXs-oHJHpEjg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic Type-2 Fuzzy Classifier Functions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Celikyilmaz, A. ; Turksen, I.B.</creator><creatorcontrib>Celikyilmaz, A. ; Turksen, I.B.</creatorcontrib><description>A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure.</description><identifier>ISBN: 9781424423514</identifier><identifier>ISBN: 1424423511</identifier><identifier>EISBN: 9781424423521</identifier><identifier>EISBN: 142442352X</identifier><identifier>DOI: 10.1109/NAFIPS.2008.4531221</identifier><identifier>LCCN: 2008902858</identifier><language>eng</language><publisher>IEEE</publisher><subject>Area measurement ; classification ; Classification algorithms ; Clustering algorithms ; Educational institutions ; Fuzzy sets ; Fuzzy systems ; Genetic algorithms ; Industrial engineering ; Shape ; type-2 fuzzy functions ; Uncertainty</subject><ispartof>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4531221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4531221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Celikyilmaz, A.</creatorcontrib><creatorcontrib>Turksen, I.B.</creatorcontrib><title>Genetic Type-2 Fuzzy Classifier Functions</title><title>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society</title><addtitle>NAFIPS</addtitle><description>A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure.</description><subject>Area measurement</subject><subject>classification</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Educational institutions</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Industrial engineering</subject><subject>Shape</subject><subject>type-2 fuzzy functions</subject><subject>Uncertainty</subject><isbn>9781424423514</isbn><isbn>1424423511</isbn><isbn>9781424423521</isbn><isbn>142442352X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVT8FKw0AUXJGCWvMFveTqIXHf27dm91iCaQtFBXMv281bWKmxZOOh_Xoj9uJchhmGYUaIBcgSQNrHl2WzeXsvUUpTklaACFcis5UBQiJUGuH6nwaaibvfuJVotLkRWUofcgKR1oC34mHFPY_R5-3pyAXmzff5fMrrg0sphsjDZPR-jF99uhez4A6JswvPRds8t_W62L6uNvVyW0Qrx8LunQQvje-0cnsVAoagfWWtD5ZJu05Z0gQYZOiqJ5JkmKtpmQNlwOlOzcXirzYy8-44xE83nHaXs-oHJHpEjg</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Celikyilmaz, A.</creator><creator>Turksen, I.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200805</creationdate><title>Genetic Type-2 Fuzzy Classifier Functions</title><author>Celikyilmaz, A. ; Turksen, I.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9ba01c08cd53ab3ff2ff5c799cf9e45ad3945412f0fd764048ee7858a1381a5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Area measurement</topic><topic>classification</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Educational institutions</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Industrial engineering</topic><topic>Shape</topic><topic>type-2 fuzzy functions</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Celikyilmaz, A.</creatorcontrib><creatorcontrib>Turksen, I.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Celikyilmaz, A.</au><au>Turksen, I.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic Type-2 Fuzzy Classifier Functions</atitle><btitle>NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society</btitle><stitle>NAFIPS</stitle><date>2008-05</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424423514</isbn><isbn>1424423511</isbn><eisbn>9781424423521</eisbn><eisbn>142442352X</eisbn><abstract>A new type-2 fuzzy classifier function system is proposed for uncertainty modeling using genetic algorithms - GT2FCF. Proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy classifier function systems induced by learning parameters, as well as fuzzy classifier functions. Hidden structures are captured with the implementation of improved fuzzy clustering. The optimum uncertainty interval of the type-2 fuzzy membership values are captured with a genetic learning algorithm. The results of the experiments show that the GT2FCF is comparable - if not superior- to well-known benchmark methods in terms of area under the receiver operating curve (AUC) performance measure.</abstract><pub>IEEE</pub><doi>10.1109/NAFIPS.2008.4531221</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424423514 |
ispartof | NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4531221 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Area measurement classification Classification algorithms Clustering algorithms Educational institutions Fuzzy sets Fuzzy systems Genetic algorithms Industrial engineering Shape type-2 fuzzy functions Uncertainty |
title | Genetic Type-2 Fuzzy Classifier Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20Type-2%20Fuzzy%20Classifier%20Functions&rft.btitle=NAFIPS%202008%20-%202008%20Annual%20Meeting%20of%20the%20North%20American%20Fuzzy%20Information%20Processing%20Society&rft.au=Celikyilmaz,%20A.&rft.date=2008-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424423514&rft.isbn_list=1424423511&rft_id=info:doi/10.1109/NAFIPS.2008.4531221&rft.eisbn=9781424423521&rft.eisbn_list=142442352X&rft_dat=%3Cieee_6IE%3E4531221%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-9ba01c08cd53ab3ff2ff5c799cf9e45ad3945412f0fd764048ee7858a1381a5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4531221&rfr_iscdi=true |