Loading…

Immunity-Based Dynamic Anomaly Detection Method

In many of actual anomaly detection systems, the training data is only partially composed by the normal elements; simultaneously, self and non-self space often vary over time, so these systems often build profiles based on some of self elements and adjust themselves to adapt network varieties. Howev...

Full description

Saved in:
Bibliographic Details
Main Authors: Sun, Feixian, Zheng, Qiusheng, Tao, Li
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 647
container_issue
container_start_page 644
container_title
container_volume 2
creator Sun, Feixian
Zheng, Qiusheng
Tao, Li
description In many of actual anomaly detection systems, the training data is only partially composed by the normal elements; simultaneously, self and non-self space often vary over time, so these systems often build profiles based on some of self elements and adjust themselves to adapt network varieties. However, these techniques need a large number of self elements to build the profile and lack adaptability. Aiming at the problems of traditional techniques, an immunity-based dynamic method for network anomaly detection, referred to as WAD, is proposed in this paper. WAD builds an appropriate profile using only a subset of normal elements and adapts the varieties of self and non-self space, which adjust adaptively the self radius, the detection radius, and numbers of detectors to amend the built profile. The experiment results show that WAD is an efficient solution to anomaly detection, and has the features of high detection rate, low false alarm rate, self-learning, and adaptation.
doi_str_mv 10.1109/ICBBE.2008.157
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4535037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4535037</ieee_id><sourcerecordid>20516695</sourcerecordid><originalsourceid>FETCH-LOGICAL-i121t-77ae13b75564317d9ae2c8e0e1025d40cb14bb5fcf84f3a4a96615cb3bbd02e93</originalsourceid><addsrcrecordid>eNo9jDlPw0AUhJcjEklIS0Pjis7Je3t6y1xApCAaqK3d9bMw8hGyTuF_TySOaqT5vhnG7hDmiGAXu_VqtZ1zgGyOylywCUouJRqZ4SUbc1SYGs35FZtZk_0xo6__GcoRm5z3xoK2YG_YLMZPAMBzY60Zs8WuaU5t1Q_pykUqks3QuqYKybLtGlcPyYZ6Cn3VtckL9R9dcctGpasjzX5zyt4ft2_r53T_-rRbL_dphRz71BhHKLxRSkuBprCOeMgICIGrQkLwKL1XZSgzWQonndUaVfDC-wI4WTFlDz-_h2P3daLY500VA9W1a6k7xZyDQq2tOov3P2JFRPnhWDXuOORSCQXCiG-It1Zu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20516695</pqid></control><display><type>conference_proceeding</type><title>Immunity-Based Dynamic Anomaly Detection Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sun, Feixian ; Zheng, Qiusheng ; Tao, Li</creator><creatorcontrib>Sun, Feixian ; Zheng, Qiusheng ; Tao, Li</creatorcontrib><description>In many of actual anomaly detection systems, the training data is only partially composed by the normal elements; simultaneously, self and non-self space often vary over time, so these systems often build profiles based on some of self elements and adjust themselves to adapt network varieties. However, these techniques need a large number of self elements to build the profile and lack adaptability. Aiming at the problems of traditional techniques, an immunity-based dynamic method for network anomaly detection, referred to as WAD, is proposed in this paper. WAD builds an appropriate profile using only a subset of normal elements and adapts the varieties of self and non-self space, which adjust adaptively the self radius, the detection radius, and numbers of detectors to amend the built profile. The experiment results show that WAD is an efficient solution to anomaly detection, and has the features of high detection rate, low false alarm rate, self-learning, and adaptation.</description><identifier>ISSN: 2151-7614</identifier><identifier>ISBN: 9781424417476</identifier><identifier>ISBN: 1424417473</identifier><identifier>EISSN: 2151-7622</identifier><identifier>EISBN: 1424417481</identifier><identifier>EISBN: 9781424417483</identifier><identifier>DOI: 10.1109/ICBBE.2008.157</identifier><identifier>LCCN: 2007906909</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; Computational Intelligence Society ; Computer science ; Computer security ; Computer vision ; Detectors ; Immune system ; Space technology ; Sun ; Training data</subject><ispartof>2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008, Vol.2, p.644-647</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4535037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2051,4009,4035,4036,27902,27903,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4535037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Feixian</creatorcontrib><creatorcontrib>Zheng, Qiusheng</creatorcontrib><creatorcontrib>Tao, Li</creatorcontrib><title>Immunity-Based Dynamic Anomaly Detection Method</title><title>2008 2nd International Conference on Bioinformatics and Biomedical Engineering</title><addtitle>ICBBE</addtitle><description>In many of actual anomaly detection systems, the training data is only partially composed by the normal elements; simultaneously, self and non-self space often vary over time, so these systems often build profiles based on some of self elements and adjust themselves to adapt network varieties. However, these techniques need a large number of self elements to build the profile and lack adaptability. Aiming at the problems of traditional techniques, an immunity-based dynamic method for network anomaly detection, referred to as WAD, is proposed in this paper. WAD builds an appropriate profile using only a subset of normal elements and adapts the varieties of self and non-self space, which adjust adaptively the self radius, the detection radius, and numbers of detectors to amend the built profile. The experiment results show that WAD is an efficient solution to anomaly detection, and has the features of high detection rate, low false alarm rate, self-learning, and adaptation.</description><subject>Biology</subject><subject>Computational Intelligence Society</subject><subject>Computer science</subject><subject>Computer security</subject><subject>Computer vision</subject><subject>Detectors</subject><subject>Immune system</subject><subject>Space technology</subject><subject>Sun</subject><subject>Training data</subject><issn>2151-7614</issn><issn>2151-7622</issn><isbn>9781424417476</isbn><isbn>1424417473</isbn><isbn>1424417481</isbn><isbn>9781424417483</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jDlPw0AUhJcjEklIS0Pjis7Je3t6y1xApCAaqK3d9bMw8hGyTuF_TySOaqT5vhnG7hDmiGAXu_VqtZ1zgGyOylywCUouJRqZ4SUbc1SYGs35FZtZk_0xo6__GcoRm5z3xoK2YG_YLMZPAMBzY60Zs8WuaU5t1Q_pykUqks3QuqYKybLtGlcPyYZ6Cn3VtckL9R9dcctGpasjzX5zyt4ft2_r53T_-rRbL_dphRz71BhHKLxRSkuBprCOeMgICIGrQkLwKL1XZSgzWQonndUaVfDC-wI4WTFlDz-_h2P3daLY500VA9W1a6k7xZyDQq2tOov3P2JFRPnhWDXuOORSCQXCiG-It1Zu</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Sun, Feixian</creator><creator>Zheng, Qiusheng</creator><creator>Tao, Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2008</creationdate><title>Immunity-Based Dynamic Anomaly Detection Method</title><author>Sun, Feixian ; Zheng, Qiusheng ; Tao, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i121t-77ae13b75564317d9ae2c8e0e1025d40cb14bb5fcf84f3a4a96615cb3bbd02e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biology</topic><topic>Computational Intelligence Society</topic><topic>Computer science</topic><topic>Computer security</topic><topic>Computer vision</topic><topic>Detectors</topic><topic>Immune system</topic><topic>Space technology</topic><topic>Sun</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Feixian</creatorcontrib><creatorcontrib>Zheng, Qiusheng</creatorcontrib><creatorcontrib>Tao, Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Feixian</au><au>Zheng, Qiusheng</au><au>Tao, Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Immunity-Based Dynamic Anomaly Detection Method</atitle><btitle>2008 2nd International Conference on Bioinformatics and Biomedical Engineering</btitle><stitle>ICBBE</stitle><date>2008</date><risdate>2008</risdate><volume>2</volume><spage>644</spage><epage>647</epage><pages>644-647</pages><issn>2151-7614</issn><eissn>2151-7622</eissn><isbn>9781424417476</isbn><isbn>1424417473</isbn><eisbn>1424417481</eisbn><eisbn>9781424417483</eisbn><abstract>In many of actual anomaly detection systems, the training data is only partially composed by the normal elements; simultaneously, self and non-self space often vary over time, so these systems often build profiles based on some of self elements and adjust themselves to adapt network varieties. However, these techniques need a large number of self elements to build the profile and lack adaptability. Aiming at the problems of traditional techniques, an immunity-based dynamic method for network anomaly detection, referred to as WAD, is proposed in this paper. WAD builds an appropriate profile using only a subset of normal elements and adapts the varieties of self and non-self space, which adjust adaptively the self radius, the detection radius, and numbers of detectors to amend the built profile. The experiment results show that WAD is an efficient solution to anomaly detection, and has the features of high detection rate, low false alarm rate, self-learning, and adaptation.</abstract><pub>IEEE</pub><doi>10.1109/ICBBE.2008.157</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-7614
ispartof 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008, Vol.2, p.644-647
issn 2151-7614
2151-7622
language eng
recordid cdi_ieee_primary_4535037
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biology
Computational Intelligence Society
Computer science
Computer security
Computer vision
Detectors
Immune system
Space technology
Sun
Training data
title Immunity-Based Dynamic Anomaly Detection Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Immunity-Based%20Dynamic%20Anomaly%20Detection%20Method&rft.btitle=2008%202nd%20International%20Conference%20on%20Bioinformatics%20and%20Biomedical%20Engineering&rft.au=Sun,%20Feixian&rft.date=2008&rft.volume=2&rft.spage=644&rft.epage=647&rft.pages=644-647&rft.issn=2151-7614&rft.eissn=2151-7622&rft.isbn=9781424417476&rft.isbn_list=1424417473&rft_id=info:doi/10.1109/ICBBE.2008.157&rft.eisbn=1424417481&rft.eisbn_list=9781424417483&rft_dat=%3Cproquest_6IE%3E20516695%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i121t-77ae13b75564317d9ae2c8e0e1025d40cb14bb5fcf84f3a4a96615cb3bbd02e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20516695&rft_id=info:pmid/&rft_ieee_id=4535037&rfr_iscdi=true