Loading…

System-Level Analysis of Mobile Cellular Networks Considering Link Unreliability

Traditionally, system-level performance evaluation of mobile wireless communication networks has been addressed by only considering resource insufficiency, whereas the effect of an unreliable wireless channel has largely been ignored because of the complexity that its inclusion entails. To fill this...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2009-02, Vol.58 (2), p.926-940
Main Authors: Rodriguez-Estrello, C.B., Hernandez-Valdez, G., Cruz-Perez, F.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditionally, system-level performance evaluation of mobile wireless communication networks has been addressed by only considering resource insufficiency, whereas the effect of an unreliable wireless channel has largely been ignored because of the complexity that its inclusion entails. To fill this void, a general analytical model for the system-level performance evaluation of mobile wireless networks taking into account both resource insufficiency and link unreliability is proposed in this paper. The effect of link unreliability is captured through the appropriate probabilistic characterization of the ldquounencumbered call-interruption time.rdquo Additionally, useful functional relationships between the call-interruption processes of the proposed analytical model and some system-level parameters that can easily be obtained from statistics collected at base stations (BSs) are derived. For the sake of generality, the involved time variables (i.e., cell dwell time, unencumbered call-interruption time, and channel holding time) are considered generally distributed. Then, general and easily computable mathematical expressions for many useful performance metrics under more realistic considerations are obtained. The analytical model proposed here is able to provide new and important insights into the dependence of system performance on link unreliability. Such understanding of this teletraffic engineering issue is vital for planning, designing, dimensioning, and optimizing mobile cellular networks for present and future wireless communication systems beyond the third generation.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2008.927035