Loading…

Vision based 3-D shape sensing of flexible manipulators

Rigid robotic manipulators employ traditional sensors such as encoders or potentiometers to measure joint angles and determine end-effector position. Manipulators that are flexible, however, introduce motions that are much more difficult to measure. This is especially true for continuum manipulators...

Full description

Saved in:
Bibliographic Details
Main Authors: Camarillo, D.B., Loewke, K.E., Carlson, C.R., Salisbury, J.K.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rigid robotic manipulators employ traditional sensors such as encoders or potentiometers to measure joint angles and determine end-effector position. Manipulators that are flexible, however, introduce motions that are much more difficult to measure. This is especially true for continuum manipulators that articulate by means of material compliance. In this paper, we present a vision based system for quantifying the 3-D shape of a flexible manipulator in real-time. The sensor system is validated for accuracy with known point measurements and for precision by estimating a known 3-D shape. We present two applications of the validated system relating to the open-loop control of a tendon driven continuum manipulator. In the first application, we present a new continuum manipulator model and use the sensor to quantify 3-D performance. In the second application, we use the shape sensor system for model parameter estimation in the absence of tendon tension information.
ISSN:1050-4729
2577-087X
DOI:10.1109/ROBOT.2008.4543656