Loading…
Keyframe Reduction Techniques for Motion Capture Data
Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 296 |
container_issue | |
container_start_page | 293 |
container_title | |
container_volume | |
creator | Onder, O. Gudukbay, U. Ozguc, B. Erdem, T. Erdem, C. Ozkan, M. |
description | Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods. |
doi_str_mv | 10.1109/3DTV.2008.4547866 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4547866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4547866</ieee_id><sourcerecordid>4547866</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-255c4491c6f27164ff22e5d58445ccd210d4c071cc9226f6165cd7f3907c62913</originalsourceid><addsrcrecordid>eNo9UNtKw0AUXC8F25oPEF_yA4l7Ts7ZzT5KWy9YESSKb2XZ7GLENjWXh_69UYPzMjADM8MIcQEyBZDmKlsWrylKmafEpHOljkRkdA6ERKCZ4VhMERQkKLO3EzEbDSXl6b-BMBGzIUMbqUHRmYja9kMOYB4knAp-8IfQ2K2Pn33Zu66qd3Hh3fuu-up9G4e6iR_rX3Vh913f-HhpO3suJsF-tj4aeS5eblbF4i5ZP93eL67XSYWQdwkyOyIDTgX8qQ8B0XPJORE7VyLIktwwzDmDqIICxa7UIRvGOoUGsrm4_MutvPebfVNtbXPYjHdk3zOkSt4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Keyframe Reduction Techniques for Motion Capture Data</title><source>IEEE Xplore All Conference Series</source><creator>Onder, O. ; Gudukbay, U. ; Ozguc, B. ; Erdem, T. ; Erdem, C. ; Ozkan, M.</creator><creatorcontrib>Onder, O. ; Gudukbay, U. ; Ozguc, B. ; Erdem, T. ; Erdem, C. ; Ozkan, M.</creatorcontrib><description>Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods.</description><identifier>ISSN: 2161-2021</identifier><identifier>ISBN: 1424417600</identifier><identifier>ISBN: 9781424417605</identifier><identifier>EISSN: 2161-203X</identifier><identifier>EISBN: 9781424417551</identifier><identifier>EISBN: 1424417554</identifier><identifier>DOI: 10.1109/3DTV.2008.4547866</identifier><identifier>LCCN: 2007907164</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animation ; Curve fitting ; curve simplification ; Data engineering ; Data mining ; Dynamic programming ; Iterative algorithms ; keyframe reduction ; Motion capture ; Motion control ; noise filtering ; Noise reduction ; OFDM modulation ; Working environment noise</subject><ispartof>2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008, p.293-296</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4547866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4547866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Onder, O.</creatorcontrib><creatorcontrib>Gudukbay, U.</creatorcontrib><creatorcontrib>Ozguc, B.</creatorcontrib><creatorcontrib>Erdem, T.</creatorcontrib><creatorcontrib>Erdem, C.</creatorcontrib><creatorcontrib>Ozkan, M.</creatorcontrib><title>Keyframe Reduction Techniques for Motion Capture Data</title><title>2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video</title><addtitle>3DTV</addtitle><description>Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods.</description><subject>Animation</subject><subject>Curve fitting</subject><subject>curve simplification</subject><subject>Data engineering</subject><subject>Data mining</subject><subject>Dynamic programming</subject><subject>Iterative algorithms</subject><subject>keyframe reduction</subject><subject>Motion capture</subject><subject>Motion control</subject><subject>noise filtering</subject><subject>Noise reduction</subject><subject>OFDM modulation</subject><subject>Working environment noise</subject><issn>2161-2021</issn><issn>2161-203X</issn><isbn>1424417600</isbn><isbn>9781424417605</isbn><isbn>9781424417551</isbn><isbn>1424417554</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UNtKw0AUXC8F25oPEF_yA4l7Ts7ZzT5KWy9YESSKb2XZ7GLENjWXh_69UYPzMjADM8MIcQEyBZDmKlsWrylKmafEpHOljkRkdA6ERKCZ4VhMERQkKLO3EzEbDSXl6b-BMBGzIUMbqUHRmYja9kMOYB4knAp-8IfQ2K2Pn33Zu66qd3Hh3fuu-up9G4e6iR_rX3Vh913f-HhpO3suJsF-tj4aeS5eblbF4i5ZP93eL67XSYWQdwkyOyIDTgX8qQ8B0XPJORE7VyLIktwwzDmDqIICxa7UIRvGOoUGsrm4_MutvPebfVNtbXPYjHdk3zOkSt4</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Onder, O.</creator><creator>Gudukbay, U.</creator><creator>Ozguc, B.</creator><creator>Erdem, T.</creator><creator>Erdem, C.</creator><creator>Ozkan, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20080101</creationdate><title>Keyframe Reduction Techniques for Motion Capture Data</title><author>Onder, O. ; Gudukbay, U. ; Ozguc, B. ; Erdem, T. ; Erdem, C. ; Ozkan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-255c4491c6f27164ff22e5d58445ccd210d4c071cc9226f6165cd7f3907c62913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animation</topic><topic>Curve fitting</topic><topic>curve simplification</topic><topic>Data engineering</topic><topic>Data mining</topic><topic>Dynamic programming</topic><topic>Iterative algorithms</topic><topic>keyframe reduction</topic><topic>Motion capture</topic><topic>Motion control</topic><topic>noise filtering</topic><topic>Noise reduction</topic><topic>OFDM modulation</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Onder, O.</creatorcontrib><creatorcontrib>Gudukbay, U.</creatorcontrib><creatorcontrib>Ozguc, B.</creatorcontrib><creatorcontrib>Erdem, T.</creatorcontrib><creatorcontrib>Erdem, C.</creatorcontrib><creatorcontrib>Ozkan, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Onder, O.</au><au>Gudukbay, U.</au><au>Ozguc, B.</au><au>Erdem, T.</au><au>Erdem, C.</au><au>Ozkan, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Keyframe Reduction Techniques for Motion Capture Data</atitle><btitle>2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video</btitle><stitle>3DTV</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>293</spage><epage>296</epage><pages>293-296</pages><issn>2161-2021</issn><eissn>2161-203X</eissn><isbn>1424417600</isbn><isbn>9781424417605</isbn><eisbn>9781424417551</eisbn><eisbn>1424417554</eisbn><abstract>Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods.</abstract><pub>IEEE</pub><doi>10.1109/3DTV.2008.4547866</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-2021 |
ispartof | 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008, p.293-296 |
issn | 2161-2021 2161-203X |
language | eng |
recordid | cdi_ieee_primary_4547866 |
source | IEEE Xplore All Conference Series |
subjects | Animation Curve fitting curve simplification Data engineering Data mining Dynamic programming Iterative algorithms keyframe reduction Motion capture Motion control noise filtering Noise reduction OFDM modulation Working environment noise |
title | Keyframe Reduction Techniques for Motion Capture Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Keyframe%20Reduction%20Techniques%20for%20Motion%20Capture%20Data&rft.btitle=2008%203DTV%20Conference:%20The%20True%20Vision%20-%20Capture,%20Transmission%20and%20Display%20of%203D%20Video&rft.au=Onder,%20O.&rft.date=2008-01-01&rft.spage=293&rft.epage=296&rft.pages=293-296&rft.issn=2161-2021&rft.eissn=2161-203X&rft.isbn=1424417600&rft.isbn_list=9781424417605&rft_id=info:doi/10.1109/3DTV.2008.4547866&rft.eisbn=9781424417551&rft.eisbn_list=1424417554&rft_dat=%3Cieee_CHZPO%3E4547866%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-255c4491c6f27164ff22e5d58445ccd210d4c071cc9226f6165cd7f3907c62913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4547866&rfr_iscdi=true |