Loading…

Keyframe Reduction Techniques for Motion Capture Data

Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to t...

Full description

Saved in:
Bibliographic Details
Main Authors: Onder, O., Gudukbay, U., Ozguc, B., Erdem, T., Erdem, C., Ozkan, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 296
container_issue
container_start_page 293
container_title
container_volume
creator Onder, O.
Gudukbay, U.
Ozguc, B.
Erdem, T.
Erdem, C.
Ozkan, M.
description Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods.
doi_str_mv 10.1109/3DTV.2008.4547866
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4547866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4547866</ieee_id><sourcerecordid>4547866</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-255c4491c6f27164ff22e5d58445ccd210d4c071cc9226f6165cd7f3907c62913</originalsourceid><addsrcrecordid>eNo9UNtKw0AUXC8F25oPEF_yA4l7Ts7ZzT5KWy9YESSKb2XZ7GLENjWXh_69UYPzMjADM8MIcQEyBZDmKlsWrylKmafEpHOljkRkdA6ERKCZ4VhMERQkKLO3EzEbDSXl6b-BMBGzIUMbqUHRmYja9kMOYB4knAp-8IfQ2K2Pn33Zu66qd3Hh3fuu-up9G4e6iR_rX3Vh913f-HhpO3suJsF-tj4aeS5eblbF4i5ZP93eL67XSYWQdwkyOyIDTgX8qQ8B0XPJORE7VyLIktwwzDmDqIICxa7UIRvGOoUGsrm4_MutvPebfVNtbXPYjHdk3zOkSt4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Keyframe Reduction Techniques for Motion Capture Data</title><source>IEEE Xplore All Conference Series</source><creator>Onder, O. ; Gudukbay, U. ; Ozguc, B. ; Erdem, T. ; Erdem, C. ; Ozkan, M.</creator><creatorcontrib>Onder, O. ; Gudukbay, U. ; Ozguc, B. ; Erdem, T. ; Erdem, C. ; Ozkan, M.</creatorcontrib><description>Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods.</description><identifier>ISSN: 2161-2021</identifier><identifier>ISBN: 1424417600</identifier><identifier>ISBN: 9781424417605</identifier><identifier>EISSN: 2161-203X</identifier><identifier>EISBN: 9781424417551</identifier><identifier>EISBN: 1424417554</identifier><identifier>DOI: 10.1109/3DTV.2008.4547866</identifier><identifier>LCCN: 2007907164</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animation ; Curve fitting ; curve simplification ; Data engineering ; Data mining ; Dynamic programming ; Iterative algorithms ; keyframe reduction ; Motion capture ; Motion control ; noise filtering ; Noise reduction ; OFDM modulation ; Working environment noise</subject><ispartof>2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008, p.293-296</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4547866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4547866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Onder, O.</creatorcontrib><creatorcontrib>Gudukbay, U.</creatorcontrib><creatorcontrib>Ozguc, B.</creatorcontrib><creatorcontrib>Erdem, T.</creatorcontrib><creatorcontrib>Erdem, C.</creatorcontrib><creatorcontrib>Ozkan, M.</creatorcontrib><title>Keyframe Reduction Techniques for Motion Capture Data</title><title>2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video</title><addtitle>3DTV</addtitle><description>Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods.</description><subject>Animation</subject><subject>Curve fitting</subject><subject>curve simplification</subject><subject>Data engineering</subject><subject>Data mining</subject><subject>Dynamic programming</subject><subject>Iterative algorithms</subject><subject>keyframe reduction</subject><subject>Motion capture</subject><subject>Motion control</subject><subject>noise filtering</subject><subject>Noise reduction</subject><subject>OFDM modulation</subject><subject>Working environment noise</subject><issn>2161-2021</issn><issn>2161-203X</issn><isbn>1424417600</isbn><isbn>9781424417605</isbn><isbn>9781424417551</isbn><isbn>1424417554</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UNtKw0AUXC8F25oPEF_yA4l7Ts7ZzT5KWy9YESSKb2XZ7GLENjWXh_69UYPzMjADM8MIcQEyBZDmKlsWrylKmafEpHOljkRkdA6ERKCZ4VhMERQkKLO3EzEbDSXl6b-BMBGzIUMbqUHRmYja9kMOYB4knAp-8IfQ2K2Pn33Zu66qd3Hh3fuu-up9G4e6iR_rX3Vh913f-HhpO3suJsF-tj4aeS5eblbF4i5ZP93eL67XSYWQdwkyOyIDTgX8qQ8B0XPJORE7VyLIktwwzDmDqIICxa7UIRvGOoUGsrm4_MutvPebfVNtbXPYjHdk3zOkSt4</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Onder, O.</creator><creator>Gudukbay, U.</creator><creator>Ozguc, B.</creator><creator>Erdem, T.</creator><creator>Erdem, C.</creator><creator>Ozkan, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20080101</creationdate><title>Keyframe Reduction Techniques for Motion Capture Data</title><author>Onder, O. ; Gudukbay, U. ; Ozguc, B. ; Erdem, T. ; Erdem, C. ; Ozkan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-255c4491c6f27164ff22e5d58445ccd210d4c071cc9226f6165cd7f3907c62913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animation</topic><topic>Curve fitting</topic><topic>curve simplification</topic><topic>Data engineering</topic><topic>Data mining</topic><topic>Dynamic programming</topic><topic>Iterative algorithms</topic><topic>keyframe reduction</topic><topic>Motion capture</topic><topic>Motion control</topic><topic>noise filtering</topic><topic>Noise reduction</topic><topic>OFDM modulation</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Onder, O.</creatorcontrib><creatorcontrib>Gudukbay, U.</creatorcontrib><creatorcontrib>Ozguc, B.</creatorcontrib><creatorcontrib>Erdem, T.</creatorcontrib><creatorcontrib>Erdem, C.</creatorcontrib><creatorcontrib>Ozkan, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Onder, O.</au><au>Gudukbay, U.</au><au>Ozguc, B.</au><au>Erdem, T.</au><au>Erdem, C.</au><au>Ozkan, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Keyframe Reduction Techniques for Motion Capture Data</atitle><btitle>2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video</btitle><stitle>3DTV</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>293</spage><epage>296</epage><pages>293-296</pages><issn>2161-2021</issn><eissn>2161-203X</eissn><isbn>1424417600</isbn><isbn>9781424417605</isbn><eisbn>9781424417551</eisbn><eisbn>1424417554</eisbn><abstract>Two methods for keyframe reduction of motion capture data are presented. Keyframe reduction of motion capture data enables animators to easily edit motion data with smaller number of keyframes. One of the approaches achieves keyframe reduction and noise removal simultaneously by fitting a curve to the motion information using dynamic programming. The other approach uses curve simplification algorithms on the motion capture data until a predefined threshold of number of keyframes is reached. Although the error rate varies with different motions, the results show that curve fitting with dynamic programming performs as good as curve simplification methods.</abstract><pub>IEEE</pub><doi>10.1109/3DTV.2008.4547866</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-2021
ispartof 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008, p.293-296
issn 2161-2021
2161-203X
language eng
recordid cdi_ieee_primary_4547866
source IEEE Xplore All Conference Series
subjects Animation
Curve fitting
curve simplification
Data engineering
Data mining
Dynamic programming
Iterative algorithms
keyframe reduction
Motion capture
Motion control
noise filtering
Noise reduction
OFDM modulation
Working environment noise
title Keyframe Reduction Techniques for Motion Capture Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Keyframe%20Reduction%20Techniques%20for%20Motion%20Capture%20Data&rft.btitle=2008%203DTV%20Conference:%20The%20True%20Vision%20-%20Capture,%20Transmission%20and%20Display%20of%203D%20Video&rft.au=Onder,%20O.&rft.date=2008-01-01&rft.spage=293&rft.epage=296&rft.pages=293-296&rft.issn=2161-2021&rft.eissn=2161-203X&rft.isbn=1424417600&rft.isbn_list=9781424417605&rft_id=info:doi/10.1109/3DTV.2008.4547866&rft.eisbn=9781424417551&rft.eisbn_list=1424417554&rft_dat=%3Cieee_CHZPO%3E4547866%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-255c4491c6f27164ff22e5d58445ccd210d4c071cc9226f6165cd7f3907c62913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4547866&rfr_iscdi=true