Loading…

Constellation Design via Capacity Maximization

Traditional constellations are uniformally spaced. By giving up uniform spacing, constellations can be designed to have larger joint (i.e. overall) capacity or parallel decoding capacity. In this paper non-uniformally spaced (i.e. 'geometrically' shaped) constellations are designed to maxi...

Full description

Saved in:
Bibliographic Details
Main Authors: Barsoum, M.F., Jones, C., Fitz, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1825
container_issue
container_start_page 1821
container_title
container_volume
creator Barsoum, M.F.
Jones, C.
Fitz, M.
description Traditional constellations are uniformally spaced. By giving up uniform spacing, constellations can be designed to have larger joint (i.e. overall) capacity or parallel decoding capacity. In this paper non-uniformally spaced (i.e. 'geometrically' shaped) constellations are designed to maximize either of these quantities. By way of numerical capacity computations we show that except in special cases, there are no universally optimal geometrically shaped constellations across all code rates, and that the optimization of a constellation has to target a specific code rate. Unlike joint capacity, optimizing for parallel decoding capacity is label dependent. For PAM and PSK constellations, we found the maximum parallel decoding capacity to be achieved using gray (not necessarily binary reflective gray) labels. However, for PAM constellations, not all gray labels can yield the highest parallel decoding capacity. Besides the conventional use of a ( log2 (M) -1) / log2 (M) code rate with an M-point constellation for bandwidth efficient communications, the optimized constellations could offer further non-trivial gains at lower code rates (unlike traditional constellations). An optimized constellation is used with a state-of-the-art LDPC code and simulation results are presented. This paper also draws a distinction between probabilistic shaping and geometric shaping and in fact proves under broad conditions, that any gain in capacity which can be found via probabilistic shaping can also be achieved or exceeded solely through geometric shaping.
doi_str_mv 10.1109/ISIT.2007.4557486
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4557486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4557486</ieee_id><sourcerecordid>4557486</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d9600f1479ee1183667d17575f7773f5168dcaa336f2dd856d7399ecc98d81c83</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhM1PJaKSB0Bc8gIJ3qzt9R5RoBCpiAPlXFmxg4zStGoiRHl6IigSc5g5fKM5jBBXIAsAyTf1S70qSimpUFqTsuZEpEwWVKnUZAynIilBU24B6OwfQyY8_2OS9UwkVOZArJAuRDoM73KS0mjZJKKotv0whq5zY9z22V0Y4luffUSXVW7nmjgesif3GTfx66dwKWat64aQHnMuXhf3q-oxXz4_1NXtMo9Aesw9GylbUMQhAFg0hvwESLdEhK0GY33jHKJpS--tNp6QOTQNW2-hsTgX17-7MYSw3u3jxu0P6-MT-A207kmy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constellation Design via Capacity Maximization</title><source>IEEE Xplore All Conference Series</source><creator>Barsoum, M.F. ; Jones, C. ; Fitz, M.</creator><creatorcontrib>Barsoum, M.F. ; Jones, C. ; Fitz, M.</creatorcontrib><description>Traditional constellations are uniformally spaced. By giving up uniform spacing, constellations can be designed to have larger joint (i.e. overall) capacity or parallel decoding capacity. In this paper non-uniformally spaced (i.e. 'geometrically' shaped) constellations are designed to maximize either of these quantities. By way of numerical capacity computations we show that except in special cases, there are no universally optimal geometrically shaped constellations across all code rates, and that the optimization of a constellation has to target a specific code rate. Unlike joint capacity, optimizing for parallel decoding capacity is label dependent. For PAM and PSK constellations, we found the maximum parallel decoding capacity to be achieved using gray (not necessarily binary reflective gray) labels. However, for PAM constellations, not all gray labels can yield the highest parallel decoding capacity. Besides the conventional use of a ( log2 (M) -1) / log2 (M) code rate with an M-point constellation for bandwidth efficient communications, the optimized constellations could offer further non-trivial gains at lower code rates (unlike traditional constellations). An optimized constellation is used with a state-of-the-art LDPC code and simulation results are presented. This paper also draws a distinction between probabilistic shaping and geometric shaping and in fact proves under broad conditions, that any gain in capacity which can be found via probabilistic shaping can also be achieved or exceeded solely through geometric shaping.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424413973</identifier><identifier>ISBN: 1424413974</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424414291</identifier><identifier>EISBN: 1424414296</identifier><identifier>DOI: 10.1109/ISIT.2007.4557486</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>AWGN ; Capacity planning ; Constellation diagram ; Decoding ; Gain ; Laboratories ; Parity check codes ; Particle measurements ; Propulsion ; Space technology</subject><ispartof>2007 IEEE International Symposium on Information Theory, 2007, p.1821-1825</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4557486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4557486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barsoum, M.F.</creatorcontrib><creatorcontrib>Jones, C.</creatorcontrib><creatorcontrib>Fitz, M.</creatorcontrib><title>Constellation Design via Capacity Maximization</title><title>2007 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>Traditional constellations are uniformally spaced. By giving up uniform spacing, constellations can be designed to have larger joint (i.e. overall) capacity or parallel decoding capacity. In this paper non-uniformally spaced (i.e. 'geometrically' shaped) constellations are designed to maximize either of these quantities. By way of numerical capacity computations we show that except in special cases, there are no universally optimal geometrically shaped constellations across all code rates, and that the optimization of a constellation has to target a specific code rate. Unlike joint capacity, optimizing for parallel decoding capacity is label dependent. For PAM and PSK constellations, we found the maximum parallel decoding capacity to be achieved using gray (not necessarily binary reflective gray) labels. However, for PAM constellations, not all gray labels can yield the highest parallel decoding capacity. Besides the conventional use of a ( log2 (M) -1) / log2 (M) code rate with an M-point constellation for bandwidth efficient communications, the optimized constellations could offer further non-trivial gains at lower code rates (unlike traditional constellations). An optimized constellation is used with a state-of-the-art LDPC code and simulation results are presented. This paper also draws a distinction between probabilistic shaping and geometric shaping and in fact proves under broad conditions, that any gain in capacity which can be found via probabilistic shaping can also be achieved or exceeded solely through geometric shaping.</description><subject>AWGN</subject><subject>Capacity planning</subject><subject>Constellation diagram</subject><subject>Decoding</subject><subject>Gain</subject><subject>Laboratories</subject><subject>Parity check codes</subject><subject>Particle measurements</subject><subject>Propulsion</subject><subject>Space technology</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424413973</isbn><isbn>1424413974</isbn><isbn>9781424414291</isbn><isbn>1424414296</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkM1OwzAQhM1PJaKSB0Bc8gIJ3qzt9R5RoBCpiAPlXFmxg4zStGoiRHl6IigSc5g5fKM5jBBXIAsAyTf1S70qSimpUFqTsuZEpEwWVKnUZAynIilBU24B6OwfQyY8_2OS9UwkVOZArJAuRDoM73KS0mjZJKKotv0whq5zY9z22V0Y4luffUSXVW7nmjgesif3GTfx66dwKWat64aQHnMuXhf3q-oxXz4_1NXtMo9Aesw9GylbUMQhAFg0hvwESLdEhK0GY33jHKJpS--tNp6QOTQNW2-hsTgX17-7MYSw3u3jxu0P6-MT-A207kmy</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Barsoum, M.F.</creator><creator>Jones, C.</creator><creator>Fitz, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200706</creationdate><title>Constellation Design via Capacity Maximization</title><author>Barsoum, M.F. ; Jones, C. ; Fitz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d9600f1479ee1183667d17575f7773f5168dcaa336f2dd856d7399ecc98d81c83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>AWGN</topic><topic>Capacity planning</topic><topic>Constellation diagram</topic><topic>Decoding</topic><topic>Gain</topic><topic>Laboratories</topic><topic>Parity check codes</topic><topic>Particle measurements</topic><topic>Propulsion</topic><topic>Space technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Barsoum, M.F.</creatorcontrib><creatorcontrib>Jones, C.</creatorcontrib><creatorcontrib>Fitz, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barsoum, M.F.</au><au>Jones, C.</au><au>Fitz, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constellation Design via Capacity Maximization</atitle><btitle>2007 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2007-06</date><risdate>2007</risdate><spage>1821</spage><epage>1825</epage><pages>1821-1825</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424413973</isbn><isbn>1424413974</isbn><eisbn>9781424414291</eisbn><eisbn>1424414296</eisbn><abstract>Traditional constellations are uniformally spaced. By giving up uniform spacing, constellations can be designed to have larger joint (i.e. overall) capacity or parallel decoding capacity. In this paper non-uniformally spaced (i.e. 'geometrically' shaped) constellations are designed to maximize either of these quantities. By way of numerical capacity computations we show that except in special cases, there are no universally optimal geometrically shaped constellations across all code rates, and that the optimization of a constellation has to target a specific code rate. Unlike joint capacity, optimizing for parallel decoding capacity is label dependent. For PAM and PSK constellations, we found the maximum parallel decoding capacity to be achieved using gray (not necessarily binary reflective gray) labels. However, for PAM constellations, not all gray labels can yield the highest parallel decoding capacity. Besides the conventional use of a ( log2 (M) -1) / log2 (M) code rate with an M-point constellation for bandwidth efficient communications, the optimized constellations could offer further non-trivial gains at lower code rates (unlike traditional constellations). An optimized constellation is used with a state-of-the-art LDPC code and simulation results are presented. This paper also draws a distinction between probabilistic shaping and geometric shaping and in fact proves under broad conditions, that any gain in capacity which can be found via probabilistic shaping can also be achieved or exceeded solely through geometric shaping.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2007.4557486</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2007 IEEE International Symposium on Information Theory, 2007, p.1821-1825
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_4557486
source IEEE Xplore All Conference Series
subjects AWGN
Capacity planning
Constellation diagram
Decoding
Gain
Laboratories
Parity check codes
Particle measurements
Propulsion
Space technology
title Constellation Design via Capacity Maximization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constellation%20Design%20via%20Capacity%20Maximization&rft.btitle=2007%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Barsoum,%20M.F.&rft.date=2007-06&rft.spage=1821&rft.epage=1825&rft.pages=1821-1825&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424413973&rft.isbn_list=1424413974&rft_id=info:doi/10.1109/ISIT.2007.4557486&rft.eisbn=9781424414291&rft.eisbn_list=1424414296&rft_dat=%3Cieee_CHZPO%3E4557486%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d9600f1479ee1183667d17575f7773f5168dcaa336f2dd856d7399ecc98d81c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4557486&rfr_iscdi=true