Loading…

Multidimensional Multiple-Order Complex Parametric Model Identification

This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2008-10, Vol.56 (10), p.4574-4582
Main Authors: Kouame, D., Girault, J.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3
cites cdi_FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3
container_end_page 4582
container_issue 10
container_start_page 4574
container_title IEEE transactions on signal processing
container_volume 56
creator Kouame, D.
Girault, J.-M.
description This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method.
doi_str_mv 10.1109/TSP.2008.928088
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4558046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4558046</ieee_id><sourcerecordid>2328632791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3</originalsourceid><addsrcrecordid>eNp9kctLxDAQxoso-Dx78FIERQ9dJ82zx2XxBbusoIK3kG0SjKTtmnRF_3uzVvbgwdNkJr_vY5gvy44RjBCC6urp8WFUAohRVQoQYivbQxVBBRDOttMbKC6o4C-72X6MbwCIkIrtZbezle-ddo1po-ta5fOfwdKbYh60Cfmka1LzmT-ooBrTB1fns04bn99r0_bOulr1SXiY7Vjlozn6rQfZ88310-SumM5v7yfjaVETxPqCA2hNmCFcWAR6sQBsmSaw0IIxjDmxGpSuDMFYaF5SKxgvKy6YULSkxOKD7HLwfVVeLoNrVPiSnXLybjyV6xkg4IxC-YESez6wy9C9r0zsZeNibbxXrelWUWIiBE43SeDFvyACjDAiFcIJPf2DvnWrkO4WpWAYcU4pSdDVANWhizEYu9kUgVyHJVNYch2WHMJKirNfWxVr5W1Qbe3iRlYCB4xh7XwycM4Ys_kmlAogDH8DuGCagg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863177554</pqid></control><display><type>article</type><title>Multidimensional Multiple-Order Complex Parametric Model Identification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kouame, D. ; Girault, J.-M.</creator><creatorcontrib>Kouame, D. ; Girault, J.-M.</creatorcontrib><description>This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.928088</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Algorithms ; Applied sciences ; Autoregressive ; Complex numbers ; Computer simulation ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Engineering Sciences ; Exact sciences and technology ; Factorization ; Image processing ; Information, signal and communications theory ; Mathematical models ; Miscellaneous ; multidimensional ; Multidimensional systems ; Neodymium ; order ; parameter ; Parameter estimation ; Parametric statistics ; Recursive ; Recursive estimation ; Signal and communications theory ; Signal and Image processing ; Signal processing ; Signal, noise ; Spectral analysis ; Telecommunications and information theory ; Transformations</subject><ispartof>IEEE transactions on signal processing, 2008-10, Vol.56 (10), p.4574-4582</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3</citedby><cites>FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3</cites><orcidid>0000-0002-2356-885X ; 0000-0002-2143-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4558046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20703304$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01076502$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouame, D.</creatorcontrib><creatorcontrib>Girault, J.-M.</creatorcontrib><title>Multidimensional Multiple-Order Complex Parametric Model Identification</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method.</description><subject>Additive noise</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Autoregressive</subject><subject>Complex numbers</subject><subject>Computer simulation</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>multidimensional</subject><subject>Multidimensional systems</subject><subject>Neodymium</subject><subject>order</subject><subject>parameter</subject><subject>Parameter estimation</subject><subject>Parametric statistics</subject><subject>Recursive</subject><subject>Recursive estimation</subject><subject>Signal and communications theory</subject><subject>Signal and Image processing</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Spectral analysis</subject><subject>Telecommunications and information theory</subject><subject>Transformations</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kctLxDAQxoso-Dx78FIERQ9dJ82zx2XxBbusoIK3kG0SjKTtmnRF_3uzVvbgwdNkJr_vY5gvy44RjBCC6urp8WFUAohRVQoQYivbQxVBBRDOttMbKC6o4C-72X6MbwCIkIrtZbezle-ddo1po-ta5fOfwdKbYh60Cfmka1LzmT-ooBrTB1fns04bn99r0_bOulr1SXiY7Vjlozn6rQfZ88310-SumM5v7yfjaVETxPqCA2hNmCFcWAR6sQBsmSaw0IIxjDmxGpSuDMFYaF5SKxgvKy6YULSkxOKD7HLwfVVeLoNrVPiSnXLybjyV6xkg4IxC-YESez6wy9C9r0zsZeNibbxXrelWUWIiBE43SeDFvyACjDAiFcIJPf2DvnWrkO4WpWAYcU4pSdDVANWhizEYu9kUgVyHJVNYch2WHMJKirNfWxVr5W1Qbe3iRlYCB4xh7XwycM4Ys_kmlAogDH8DuGCagg</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Kouame, D.</creator><creator>Girault, J.-M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2356-885X</orcidid><orcidid>https://orcid.org/0000-0002-2143-759X</orcidid></search><sort><creationdate>20081001</creationdate><title>Multidimensional Multiple-Order Complex Parametric Model Identification</title><author>Kouame, D. ; Girault, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Additive noise</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Autoregressive</topic><topic>Complex numbers</topic><topic>Computer simulation</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>multidimensional</topic><topic>Multidimensional systems</topic><topic>Neodymium</topic><topic>order</topic><topic>parameter</topic><topic>Parameter estimation</topic><topic>Parametric statistics</topic><topic>Recursive</topic><topic>Recursive estimation</topic><topic>Signal and communications theory</topic><topic>Signal and Image processing</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Spectral analysis</topic><topic>Telecommunications and information theory</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouame, D.</creatorcontrib><creatorcontrib>Girault, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouame, D.</au><au>Girault, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Multiple-Order Complex Parametric Model Identification</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>56</volume><issue>10</issue><spage>4574</spage><epage>4582</epage><pages>4574-4582</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.928088</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2356-885X</orcidid><orcidid>https://orcid.org/0000-0002-2143-759X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2008-10, Vol.56 (10), p.4574-4582
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_4558046
source IEEE Electronic Library (IEL) Journals
subjects Additive noise
Algorithms
Applied sciences
Autoregressive
Complex numbers
Computer simulation
Covariance matrix
Detection, estimation, filtering, equalization, prediction
Engineering Sciences
Exact sciences and technology
Factorization
Image processing
Information, signal and communications theory
Mathematical models
Miscellaneous
multidimensional
Multidimensional systems
Neodymium
order
parameter
Parameter estimation
Parametric statistics
Recursive
Recursive estimation
Signal and communications theory
Signal and Image processing
Signal processing
Signal, noise
Spectral analysis
Telecommunications and information theory
Transformations
title Multidimensional Multiple-Order Complex Parametric Model Identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Multiple-Order%20Complex%20Parametric%20Model%20Identification&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kouame,%20D.&rft.date=2008-10-01&rft.volume=56&rft.issue=10&rft.spage=4574&rft.epage=4582&rft.pages=4574-4582&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.928088&rft_dat=%3Cproquest_ieee_%3E2328632791%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863177554&rft_id=info:pmid/&rft_ieee_id=4558046&rfr_iscdi=true