Loading…
Multidimensional Multiple-Order Complex Parametric Model Identification
This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output...
Saved in:
Published in: | IEEE transactions on signal processing 2008-10, Vol.56 (10), p.4574-4582 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3 |
container_end_page | 4582 |
container_issue | 10 |
container_start_page | 4574 |
container_title | IEEE transactions on signal processing |
container_volume | 56 |
creator | Kouame, D. Girault, J.-M. |
description | This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method. |
doi_str_mv | 10.1109/TSP.2008.928088 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4558046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4558046</ieee_id><sourcerecordid>2328632791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3</originalsourceid><addsrcrecordid>eNp9kctLxDAQxoso-Dx78FIERQ9dJ82zx2XxBbusoIK3kG0SjKTtmnRF_3uzVvbgwdNkJr_vY5gvy44RjBCC6urp8WFUAohRVQoQYivbQxVBBRDOttMbKC6o4C-72X6MbwCIkIrtZbezle-ddo1po-ta5fOfwdKbYh60Cfmka1LzmT-ooBrTB1fns04bn99r0_bOulr1SXiY7Vjlozn6rQfZ88310-SumM5v7yfjaVETxPqCA2hNmCFcWAR6sQBsmSaw0IIxjDmxGpSuDMFYaF5SKxgvKy6YULSkxOKD7HLwfVVeLoNrVPiSnXLybjyV6xkg4IxC-YESez6wy9C9r0zsZeNibbxXrelWUWIiBE43SeDFvyACjDAiFcIJPf2DvnWrkO4WpWAYcU4pSdDVANWhizEYu9kUgVyHJVNYch2WHMJKirNfWxVr5W1Qbe3iRlYCB4xh7XwycM4Ys_kmlAogDH8DuGCagg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863177554</pqid></control><display><type>article</type><title>Multidimensional Multiple-Order Complex Parametric Model Identification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kouame, D. ; Girault, J.-M.</creator><creatorcontrib>Kouame, D. ; Girault, J.-M.</creatorcontrib><description>This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.928088</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Algorithms ; Applied sciences ; Autoregressive ; Complex numbers ; Computer simulation ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Engineering Sciences ; Exact sciences and technology ; Factorization ; Image processing ; Information, signal and communications theory ; Mathematical models ; Miscellaneous ; multidimensional ; Multidimensional systems ; Neodymium ; order ; parameter ; Parameter estimation ; Parametric statistics ; Recursive ; Recursive estimation ; Signal and communications theory ; Signal and Image processing ; Signal processing ; Signal, noise ; Spectral analysis ; Telecommunications and information theory ; Transformations</subject><ispartof>IEEE transactions on signal processing, 2008-10, Vol.56 (10), p.4574-4582</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3</citedby><cites>FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3</cites><orcidid>0000-0002-2356-885X ; 0000-0002-2143-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4558046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20703304$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01076502$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouame, D.</creatorcontrib><creatorcontrib>Girault, J.-M.</creatorcontrib><title>Multidimensional Multiple-Order Complex Parametric Model Identification</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method.</description><subject>Additive noise</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Autoregressive</subject><subject>Complex numbers</subject><subject>Computer simulation</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>multidimensional</subject><subject>Multidimensional systems</subject><subject>Neodymium</subject><subject>order</subject><subject>parameter</subject><subject>Parameter estimation</subject><subject>Parametric statistics</subject><subject>Recursive</subject><subject>Recursive estimation</subject><subject>Signal and communications theory</subject><subject>Signal and Image processing</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Spectral analysis</subject><subject>Telecommunications and information theory</subject><subject>Transformations</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kctLxDAQxoso-Dx78FIERQ9dJ82zx2XxBbusoIK3kG0SjKTtmnRF_3uzVvbgwdNkJr_vY5gvy44RjBCC6urp8WFUAohRVQoQYivbQxVBBRDOttMbKC6o4C-72X6MbwCIkIrtZbezle-ddo1po-ta5fOfwdKbYh60Cfmka1LzmT-ooBrTB1fns04bn99r0_bOulr1SXiY7Vjlozn6rQfZ88310-SumM5v7yfjaVETxPqCA2hNmCFcWAR6sQBsmSaw0IIxjDmxGpSuDMFYaF5SKxgvKy6YULSkxOKD7HLwfVVeLoNrVPiSnXLybjyV6xkg4IxC-YESez6wy9C9r0zsZeNibbxXrelWUWIiBE43SeDFvyACjDAiFcIJPf2DvnWrkO4WpWAYcU4pSdDVANWhizEYu9kUgVyHJVNYch2WHMJKirNfWxVr5W1Qbe3iRlYCB4xh7XwycM4Ys_kmlAogDH8DuGCagg</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Kouame, D.</creator><creator>Girault, J.-M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2356-885X</orcidid><orcidid>https://orcid.org/0000-0002-2143-759X</orcidid></search><sort><creationdate>20081001</creationdate><title>Multidimensional Multiple-Order Complex Parametric Model Identification</title><author>Kouame, D. ; Girault, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Additive noise</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Autoregressive</topic><topic>Complex numbers</topic><topic>Computer simulation</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>multidimensional</topic><topic>Multidimensional systems</topic><topic>Neodymium</topic><topic>order</topic><topic>parameter</topic><topic>Parameter estimation</topic><topic>Parametric statistics</topic><topic>Recursive</topic><topic>Recursive estimation</topic><topic>Signal and communications theory</topic><topic>Signal and Image processing</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Spectral analysis</topic><topic>Telecommunications and information theory</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouame, D.</creatorcontrib><creatorcontrib>Girault, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouame, D.</au><au>Girault, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Multiple-Order Complex Parametric Model Identification</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>56</volume><issue>10</issue><spage>4574</spage><epage>4582</epage><pages>4574-4582</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper presents a way to access both the multiple-order and parameters of a multidimensional complex number autoregressive (AR) model through matrix factorization. The principle of this technique consists of the transformation of the multidimensional model to a pseudo simple-input simple-output AR model, then performing factorization of the covariance matrix of the data. This factorization then leads to a recursive form of the parameter and order estimation. This paper makes two principal contributions. The first is a generalization of one dimensional factored form algorithm, and the second is that it makes it possible to access all the possible different orders and parameters of a multidimensional complex number AR model of any dimension, whereas classical approaches are limited to at most four-dimensional models. Computer simulation results are provided to illustrate the behavior of this method.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.928088</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2356-885X</orcidid><orcidid>https://orcid.org/0000-0002-2143-759X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2008-10, Vol.56 (10), p.4574-4582 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_4558046 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Additive noise Algorithms Applied sciences Autoregressive Complex numbers Computer simulation Covariance matrix Detection, estimation, filtering, equalization, prediction Engineering Sciences Exact sciences and technology Factorization Image processing Information, signal and communications theory Mathematical models Miscellaneous multidimensional Multidimensional systems Neodymium order parameter Parameter estimation Parametric statistics Recursive Recursive estimation Signal and communications theory Signal and Image processing Signal processing Signal, noise Spectral analysis Telecommunications and information theory Transformations |
title | Multidimensional Multiple-Order Complex Parametric Model Identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Multiple-Order%20Complex%20Parametric%20Model%20Identification&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kouame,%20D.&rft.date=2008-10-01&rft.volume=56&rft.issue=10&rft.spage=4574&rft.epage=4582&rft.pages=4574-4582&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.928088&rft_dat=%3Cproquest_ieee_%3E2328632791%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-700dd46e478f10dbb03f6d40bd8663374fd0ad9e4338d725f867297868a5254f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863177554&rft_id=info:pmid/&rft_ieee_id=4558046&rfr_iscdi=true |