Loading…
Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons
In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorpor...
Saved in:
Published in: | 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2008-07, Vol.2008, p.1-7 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
container_volume | 2008 |
creator | Yonggang Shi Rongjie Lai Krishna, S. Sicotte, N. Dinov, I. Toga, A.W. |
description | In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately. |
doi_str_mv | 10.1109/CVPRW.2008.4563018 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4563018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4563018</ieee_id><sourcerecordid>1835411600</sourcerecordid><originalsourceid>FETCH-LOGICAL-i260t-17b404212bc7200bb9ffd1cbd80a858f4e5110d7d7cbbb5e656c6e736dc92a823</originalsourceid><addsrcrecordid>eNpVkUlPwzAQhc0mKKV_ACSUI5eU8ZY4HJBKxapKIMRyjGxnGgzZiFMk_j1BlApOc3hvvjd6Q8g-hTGlkBxPn-7un8cMQI2FjDhQtUZGSayoYEIwLkCtkwGjEYSxpNHGX40nbHOlgdoiu9-YBJiSbIeMvH8FAApKyoRvkx1G-w0lYUBuJpXzddfWjbPBTDeFthieYdG1unQBuhyrUjf-JDhrXZa7Kg_uEU2Qt7p58YGussC_YYFdXfk9sjXXhcfRcg7J48X5w_QqnN1eXk8ns9CxCLqQxkaAYJQZG_dHGpPM5xm1JlOglVRzgbJvI4uz2BpjJEYyshHGPMpswrRifEhOf7jNwpSYWaz6Y4u0aV2p28-01i79r1TuJc3rj5SDoIkSPeBoCWjr9wX6Li2dt1gUusJ64VOquBS07xJ66-HfrFXIb4G94eDH4BBxJS_fx78AtwmFgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835411600</pqid></control><display><type>article</type><title>Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons</title><source>IEEE Xplore All Conference Series</source><creator>Yonggang Shi ; Rongjie Lai ; Krishna, S. ; Sicotte, N. ; Dinov, I. ; Toga, A.W.</creator><creatorcontrib>Yonggang Shi ; Rongjie Lai ; Krishna, S. ; Sicotte, N. ; Dinov, I. ; Toga, A.W.</creatorcontrib><description>In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately.</description><identifier>ISSN: 2160-7508</identifier><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424423392</identifier><identifier>ISBN: 1424423392</identifier><identifier>EISSN: 2160-7516</identifier><identifier>EISSN: 1063-6919</identifier><identifier>EISBN: 9781424423408</identifier><identifier>EISBN: 1424423406</identifier><identifier>DOI: 10.1109/CVPRW.2008.4563018</identifier><identifier>PMID: 21339850</identifier><identifier>LCCN: 2008902852</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anisotropic magnetoresistance ; Biomedical computing ; Biomedical imaging ; Eigenvalues and eigenfunctions ; Geometry ; Neuroimaging ; Robustness ; Shape ; Skeleton ; Topology</subject><ispartof>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008-07, Vol.2008, p.1-7</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4563018$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,2057,27923,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4563018$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21339850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yonggang Shi</creatorcontrib><creatorcontrib>Rongjie Lai</creatorcontrib><creatorcontrib>Krishna, S.</creatorcontrib><creatorcontrib>Sicotte, N.</creatorcontrib><creatorcontrib>Dinov, I.</creatorcontrib><creatorcontrib>Toga, A.W.</creatorcontrib><title>Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons</title><title>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</title><addtitle>CVPRW</addtitle><addtitle>Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit</addtitle><description>In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately.</description><subject>Anisotropic magnetoresistance</subject><subject>Biomedical computing</subject><subject>Biomedical imaging</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Geometry</subject><subject>Neuroimaging</subject><subject>Robustness</subject><subject>Shape</subject><subject>Skeleton</subject><subject>Topology</subject><issn>2160-7508</issn><issn>1063-6919</issn><issn>2160-7516</issn><issn>1063-6919</issn><isbn>9781424423392</isbn><isbn>1424423392</isbn><isbn>9781424423408</isbn><isbn>1424423406</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVkUlPwzAQhc0mKKV_ACSUI5eU8ZY4HJBKxapKIMRyjGxnGgzZiFMk_j1BlApOc3hvvjd6Q8g-hTGlkBxPn-7un8cMQI2FjDhQtUZGSayoYEIwLkCtkwGjEYSxpNHGX40nbHOlgdoiu9-YBJiSbIeMvH8FAApKyoRvkx1G-w0lYUBuJpXzddfWjbPBTDeFthieYdG1unQBuhyrUjf-JDhrXZa7Kg_uEU2Qt7p58YGussC_YYFdXfk9sjXXhcfRcg7J48X5w_QqnN1eXk8ns9CxCLqQxkaAYJQZG_dHGpPM5xm1JlOglVRzgbJvI4uz2BpjJEYyshHGPMpswrRifEhOf7jNwpSYWaz6Y4u0aV2p28-01i79r1TuJc3rj5SDoIkSPeBoCWjr9wX6Li2dt1gUusJ64VOquBS07xJ66-HfrFXIb4G94eDH4BBxJS_fx78AtwmFgA</recordid><startdate>20080715</startdate><enddate>20080715</enddate><creator>Yonggang Shi</creator><creator>Rongjie Lai</creator><creator>Krishna, S.</creator><creator>Sicotte, N.</creator><creator>Dinov, I.</creator><creator>Toga, A.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080715</creationdate><title>Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons</title><author>Yonggang Shi ; Rongjie Lai ; Krishna, S. ; Sicotte, N. ; Dinov, I. ; Toga, A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i260t-17b404212bc7200bb9ffd1cbd80a858f4e5110d7d7cbbb5e656c6e736dc92a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Biomedical computing</topic><topic>Biomedical imaging</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Geometry</topic><topic>Neuroimaging</topic><topic>Robustness</topic><topic>Shape</topic><topic>Skeleton</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Yonggang Shi</creatorcontrib><creatorcontrib>Rongjie Lai</creatorcontrib><creatorcontrib>Krishna, S.</creatorcontrib><creatorcontrib>Sicotte, N.</creatorcontrib><creatorcontrib>Dinov, I.</creatorcontrib><creatorcontrib>Toga, A.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yonggang Shi</au><au>Rongjie Lai</au><au>Krishna, S.</au><au>Sicotte, N.</au><au>Dinov, I.</au><au>Toga, A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons</atitle><jtitle>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</jtitle><stitle>CVPRW</stitle><addtitle>Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit</addtitle><date>2008-07-15</date><risdate>2008</risdate><volume>2008</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2160-7508</issn><issn>1063-6919</issn><eissn>2160-7516</eissn><eissn>1063-6919</eissn><isbn>9781424423392</isbn><isbn>1424423392</isbn><eisbn>9781424423408</eisbn><eisbn>1424423406</eisbn><abstract>In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21339850</pmid><doi>10.1109/CVPRW.2008.4563018</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-7508 |
ispartof | 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008-07, Vol.2008, p.1-7 |
issn | 2160-7508 1063-6919 2160-7516 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_4563018 |
source | IEEE Xplore All Conference Series |
subjects | Anisotropic magnetoresistance Biomedical computing Biomedical imaging Eigenvalues and eigenfunctions Geometry Neuroimaging Robustness Shape Skeleton Topology |
title | Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Laplace-Beltrami%20eigenmaps:%20Bridging%20Reeb%20graphs%20and%20skeletons&rft.jtitle=2008%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops&rft.au=Yonggang%20Shi&rft.date=2008-07-15&rft.volume=2008&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2160-7508&rft.eissn=2160-7516&rft.isbn=9781424423392&rft.isbn_list=1424423392&rft_id=info:doi/10.1109/CVPRW.2008.4563018&rft.eisbn=9781424423408&rft.eisbn_list=1424423406&rft_dat=%3Cproquest_CHZPO%3E1835411600%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i260t-17b404212bc7200bb9ffd1cbd80a858f4e5110d7d7cbbb5e656c6e736dc92a823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835411600&rft_id=info:pmid/21339850&rft_ieee_id=4563018&rfr_iscdi=true |