Loading…

Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons

In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorpor...

Full description

Saved in:
Bibliographic Details
Published in:2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2008-07, Vol.2008, p.1-7
Main Authors: Yonggang Shi, Rongjie Lai, Krishna, S., Sicotte, N., Dinov, I., Toga, A.W.
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
container_volume 2008
creator Yonggang Shi
Rongjie Lai
Krishna, S.
Sicotte, N.
Dinov, I.
Toga, A.W.
description In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately.
doi_str_mv 10.1109/CVPRW.2008.4563018
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4563018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4563018</ieee_id><sourcerecordid>1835411600</sourcerecordid><originalsourceid>FETCH-LOGICAL-i260t-17b404212bc7200bb9ffd1cbd80a858f4e5110d7d7cbbb5e656c6e736dc92a823</originalsourceid><addsrcrecordid>eNpVkUlPwzAQhc0mKKV_ACSUI5eU8ZY4HJBKxapKIMRyjGxnGgzZiFMk_j1BlApOc3hvvjd6Q8g-hTGlkBxPn-7un8cMQI2FjDhQtUZGSayoYEIwLkCtkwGjEYSxpNHGX40nbHOlgdoiu9-YBJiSbIeMvH8FAApKyoRvkx1G-w0lYUBuJpXzddfWjbPBTDeFthieYdG1unQBuhyrUjf-JDhrXZa7Kg_uEU2Qt7p58YGussC_YYFdXfk9sjXXhcfRcg7J48X5w_QqnN1eXk8ns9CxCLqQxkaAYJQZG_dHGpPM5xm1JlOglVRzgbJvI4uz2BpjJEYyshHGPMpswrRifEhOf7jNwpSYWaz6Y4u0aV2p28-01i79r1TuJc3rj5SDoIkSPeBoCWjr9wX6Li2dt1gUusJ64VOquBS07xJ66-HfrFXIb4G94eDH4BBxJS_fx78AtwmFgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835411600</pqid></control><display><type>article</type><title>Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons</title><source>IEEE Xplore All Conference Series</source><creator>Yonggang Shi ; Rongjie Lai ; Krishna, S. ; Sicotte, N. ; Dinov, I. ; Toga, A.W.</creator><creatorcontrib>Yonggang Shi ; Rongjie Lai ; Krishna, S. ; Sicotte, N. ; Dinov, I. ; Toga, A.W.</creatorcontrib><description>In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately.</description><identifier>ISSN: 2160-7508</identifier><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424423392</identifier><identifier>ISBN: 1424423392</identifier><identifier>EISSN: 2160-7516</identifier><identifier>EISSN: 1063-6919</identifier><identifier>EISBN: 9781424423408</identifier><identifier>EISBN: 1424423406</identifier><identifier>DOI: 10.1109/CVPRW.2008.4563018</identifier><identifier>PMID: 21339850</identifier><identifier>LCCN: 2008902852</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anisotropic magnetoresistance ; Biomedical computing ; Biomedical imaging ; Eigenvalues and eigenfunctions ; Geometry ; Neuroimaging ; Robustness ; Shape ; Skeleton ; Topology</subject><ispartof>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008-07, Vol.2008, p.1-7</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4563018$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,2057,27923,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4563018$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21339850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yonggang Shi</creatorcontrib><creatorcontrib>Rongjie Lai</creatorcontrib><creatorcontrib>Krishna, S.</creatorcontrib><creatorcontrib>Sicotte, N.</creatorcontrib><creatorcontrib>Dinov, I.</creatorcontrib><creatorcontrib>Toga, A.W.</creatorcontrib><title>Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons</title><title>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</title><addtitle>CVPRW</addtitle><addtitle>Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit</addtitle><description>In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately.</description><subject>Anisotropic magnetoresistance</subject><subject>Biomedical computing</subject><subject>Biomedical imaging</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Geometry</subject><subject>Neuroimaging</subject><subject>Robustness</subject><subject>Shape</subject><subject>Skeleton</subject><subject>Topology</subject><issn>2160-7508</issn><issn>1063-6919</issn><issn>2160-7516</issn><issn>1063-6919</issn><isbn>9781424423392</isbn><isbn>1424423392</isbn><isbn>9781424423408</isbn><isbn>1424423406</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVkUlPwzAQhc0mKKV_ACSUI5eU8ZY4HJBKxapKIMRyjGxnGgzZiFMk_j1BlApOc3hvvjd6Q8g-hTGlkBxPn-7un8cMQI2FjDhQtUZGSayoYEIwLkCtkwGjEYSxpNHGX40nbHOlgdoiu9-YBJiSbIeMvH8FAApKyoRvkx1G-w0lYUBuJpXzddfWjbPBTDeFthieYdG1unQBuhyrUjf-JDhrXZa7Kg_uEU2Qt7p58YGussC_YYFdXfk9sjXXhcfRcg7J48X5w_QqnN1eXk8ns9CxCLqQxkaAYJQZG_dHGpPM5xm1JlOglVRzgbJvI4uz2BpjJEYyshHGPMpswrRifEhOf7jNwpSYWaz6Y4u0aV2p28-01i79r1TuJc3rj5SDoIkSPeBoCWjr9wX6Li2dt1gUusJ64VOquBS07xJ66-HfrFXIb4G94eDH4BBxJS_fx78AtwmFgA</recordid><startdate>20080715</startdate><enddate>20080715</enddate><creator>Yonggang Shi</creator><creator>Rongjie Lai</creator><creator>Krishna, S.</creator><creator>Sicotte, N.</creator><creator>Dinov, I.</creator><creator>Toga, A.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080715</creationdate><title>Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons</title><author>Yonggang Shi ; Rongjie Lai ; Krishna, S. ; Sicotte, N. ; Dinov, I. ; Toga, A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i260t-17b404212bc7200bb9ffd1cbd80a858f4e5110d7d7cbbb5e656c6e736dc92a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Biomedical computing</topic><topic>Biomedical imaging</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Geometry</topic><topic>Neuroimaging</topic><topic>Robustness</topic><topic>Shape</topic><topic>Skeleton</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Yonggang Shi</creatorcontrib><creatorcontrib>Rongjie Lai</creatorcontrib><creatorcontrib>Krishna, S.</creatorcontrib><creatorcontrib>Sicotte, N.</creatorcontrib><creatorcontrib>Dinov, I.</creatorcontrib><creatorcontrib>Toga, A.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yonggang Shi</au><au>Rongjie Lai</au><au>Krishna, S.</au><au>Sicotte, N.</au><au>Dinov, I.</au><au>Toga, A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons</atitle><jtitle>2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</jtitle><stitle>CVPRW</stitle><addtitle>Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit</addtitle><date>2008-07-15</date><risdate>2008</risdate><volume>2008</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2160-7508</issn><issn>1063-6919</issn><eissn>2160-7516</eissn><eissn>1063-6919</eissn><isbn>9781424423392</isbn><isbn>1424423392</isbn><eisbn>9781424423408</eisbn><eisbn>1424423406</eisbn><abstract>In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigen-functions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21339850</pmid><doi>10.1109/CVPRW.2008.4563018</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-7508
ispartof 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008-07, Vol.2008, p.1-7
issn 2160-7508
1063-6919
2160-7516
1063-6919
language eng
recordid cdi_ieee_primary_4563018
source IEEE Xplore All Conference Series
subjects Anisotropic magnetoresistance
Biomedical computing
Biomedical imaging
Eigenvalues and eigenfunctions
Geometry
Neuroimaging
Robustness
Shape
Skeleton
Topology
title Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Laplace-Beltrami%20eigenmaps:%20Bridging%20Reeb%20graphs%20and%20skeletons&rft.jtitle=2008%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops&rft.au=Yonggang%20Shi&rft.date=2008-07-15&rft.volume=2008&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2160-7508&rft.eissn=2160-7516&rft.isbn=9781424423392&rft.isbn_list=1424423392&rft_id=info:doi/10.1109/CVPRW.2008.4563018&rft.eisbn=9781424423408&rft.eisbn_list=1424423406&rft_dat=%3Cproquest_CHZPO%3E1835411600%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i260t-17b404212bc7200bb9ffd1cbd80a858f4e5110d7d7cbbb5e656c6e736dc92a823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835411600&rft_id=info:pmid/21339850&rft_ieee_id=4563018&rfr_iscdi=true