Loading…
DAG Scheduling on Cluster of Workstations Using Hybrid Particle Swarm Optimization
Task Scheduling is one of the core steps to effectively exploit the capabilities of resources in cluster computing environment. Scheduling of applications modeled by Directed Acyclic Graph (DAG) is a key issue in this type of environment. The task scheduling problem has been shown to be a NP Complet...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 389 |
container_issue | |
container_start_page | 384 |
container_title | |
container_volume | |
creator | Padmavathi, S. Suguna, M. Shalinie, S.M. |
description | Task Scheduling is one of the core steps to effectively exploit the capabilities of resources in cluster computing environment. Scheduling of applications modeled by Directed Acyclic Graph (DAG) is a key issue in this type of environment. The task scheduling problem has been shown to be a NP Complete in general as well as in several restricted cases. This paper presents a List Scheduling algorithm using Particle Swarm Optimization (PSO) based on the concept of Tabu Search (TS). This approach combines the excellence of both PSO and TS. This is different from the existing methods since the procedure adaptively incorporates information about Tabu lists into PSO algorithm. The proposed algorithm outperforms other algorithms in the aspects of performance and scalability. The experimental results manifest that the proposed hybrid method is effective and efficient in finding near optimal schedule length. |
doi_str_mv | 10.1109/ICETET.2008.245 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4579929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4579929</ieee_id><sourcerecordid>4579929</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c7f73a4637cbbc678264d1d13592d055666f1acac87dfb0896cdccd5dad1bc193</originalsourceid><addsrcrecordid>eNo9j8tKAzEARaNYsK1du3CTH5gx70yWZewLChU74rJkkoxG51GSKVK_3lbF1b2Lw-FeAG4xSjFG6n6Vz4pZkRKEspQwfgFGSArFKRGSX4IhwVwmiGX86r9LOQCjM6-IwJRdg0mM7wghojDlGRuCp4fpAm7Nm7OH2revsGthXh9i7wLsKvjShY_Y6953bYTP8Qwsj2XwFj7q0HtTO7j91KGBm33vG__1Q96AQaXr6CZ_OQbFfFbky2S9Wazy6TrxCvWJkZWkmgkqTVkaITMimMX2NEsRizgXQlRYG20yaavydEAYa4zlVltcGqzoGNz9ar1zbrcPvtHhuGNcKkUU_QYgjFQ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DAG Scheduling on Cluster of Workstations Using Hybrid Particle Swarm Optimization</title><source>IEEE Xplore All Conference Series</source><creator>Padmavathi, S. ; Suguna, M. ; Shalinie, S.M.</creator><creatorcontrib>Padmavathi, S. ; Suguna, M. ; Shalinie, S.M.</creatorcontrib><description>Task Scheduling is one of the core steps to effectively exploit the capabilities of resources in cluster computing environment. Scheduling of applications modeled by Directed Acyclic Graph (DAG) is a key issue in this type of environment. The task scheduling problem has been shown to be a NP Complete in general as well as in several restricted cases. This paper presents a List Scheduling algorithm using Particle Swarm Optimization (PSO) based on the concept of Tabu Search (TS). This approach combines the excellence of both PSO and TS. This is different from the existing methods since the procedure adaptively incorporates information about Tabu lists into PSO algorithm. The proposed algorithm outperforms other algorithms in the aspects of performance and scalability. The experimental results manifest that the proposed hybrid method is effective and efficient in finding near optimal schedule length.</description><identifier>ISSN: 2157-0477</identifier><identifier>EISSN: 2157-0485</identifier><identifier>EISBN: 0769532675</identifier><identifier>EISBN: 9780769532677</identifier><identifier>DOI: 10.1109/ICETET.2008.245</identifier><identifier>LCCN: 2008926134</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; DAG Scheduling ; Optimal scheduling ; Particle swarm optimization ; Processor scheduling ; Program processors ; Schedules ; Scheduling ; Tabu Search ; Task Scheduling</subject><ispartof>2008 First International Conference on Emerging Trends in Engineering and Technology, 2008, p.384-389</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4579929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4579929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Padmavathi, S.</creatorcontrib><creatorcontrib>Suguna, M.</creatorcontrib><creatorcontrib>Shalinie, S.M.</creatorcontrib><title>DAG Scheduling on Cluster of Workstations Using Hybrid Particle Swarm Optimization</title><title>2008 First International Conference on Emerging Trends in Engineering and Technology</title><addtitle>ICETET</addtitle><description>Task Scheduling is one of the core steps to effectively exploit the capabilities of resources in cluster computing environment. Scheduling of applications modeled by Directed Acyclic Graph (DAG) is a key issue in this type of environment. The task scheduling problem has been shown to be a NP Complete in general as well as in several restricted cases. This paper presents a List Scheduling algorithm using Particle Swarm Optimization (PSO) based on the concept of Tabu Search (TS). This approach combines the excellence of both PSO and TS. This is different from the existing methods since the procedure adaptively incorporates information about Tabu lists into PSO algorithm. The proposed algorithm outperforms other algorithms in the aspects of performance and scalability. The experimental results manifest that the proposed hybrid method is effective and efficient in finding near optimal schedule length.</description><subject>Algorithm design and analysis</subject><subject>DAG Scheduling</subject><subject>Optimal scheduling</subject><subject>Particle swarm optimization</subject><subject>Processor scheduling</subject><subject>Program processors</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Tabu Search</subject><subject>Task Scheduling</subject><issn>2157-0477</issn><issn>2157-0485</issn><isbn>0769532675</isbn><isbn>9780769532677</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j8tKAzEARaNYsK1du3CTH5gx70yWZewLChU74rJkkoxG51GSKVK_3lbF1b2Lw-FeAG4xSjFG6n6Vz4pZkRKEspQwfgFGSArFKRGSX4IhwVwmiGX86r9LOQCjM6-IwJRdg0mM7wghojDlGRuCp4fpAm7Nm7OH2revsGthXh9i7wLsKvjShY_Y6953bYTP8Qwsj2XwFj7q0HtTO7j91KGBm33vG__1Q96AQaXr6CZ_OQbFfFbky2S9Wazy6TrxCvWJkZWkmgkqTVkaITMimMX2NEsRizgXQlRYG20yaavydEAYa4zlVltcGqzoGNz9ar1zbrcPvtHhuGNcKkUU_QYgjFQ4</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Padmavathi, S.</creator><creator>Suguna, M.</creator><creator>Shalinie, S.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200807</creationdate><title>DAG Scheduling on Cluster of Workstations Using Hybrid Particle Swarm Optimization</title><author>Padmavathi, S. ; Suguna, M. ; Shalinie, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c7f73a4637cbbc678264d1d13592d055666f1acac87dfb0896cdccd5dad1bc193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>DAG Scheduling</topic><topic>Optimal scheduling</topic><topic>Particle swarm optimization</topic><topic>Processor scheduling</topic><topic>Program processors</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Tabu Search</topic><topic>Task Scheduling</topic><toplevel>online_resources</toplevel><creatorcontrib>Padmavathi, S.</creatorcontrib><creatorcontrib>Suguna, M.</creatorcontrib><creatorcontrib>Shalinie, S.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Padmavathi, S.</au><au>Suguna, M.</au><au>Shalinie, S.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DAG Scheduling on Cluster of Workstations Using Hybrid Particle Swarm Optimization</atitle><btitle>2008 First International Conference on Emerging Trends in Engineering and Technology</btitle><stitle>ICETET</stitle><date>2008-07</date><risdate>2008</risdate><spage>384</spage><epage>389</epage><pages>384-389</pages><issn>2157-0477</issn><eissn>2157-0485</eissn><eisbn>0769532675</eisbn><eisbn>9780769532677</eisbn><abstract>Task Scheduling is one of the core steps to effectively exploit the capabilities of resources in cluster computing environment. Scheduling of applications modeled by Directed Acyclic Graph (DAG) is a key issue in this type of environment. The task scheduling problem has been shown to be a NP Complete in general as well as in several restricted cases. This paper presents a List Scheduling algorithm using Particle Swarm Optimization (PSO) based on the concept of Tabu Search (TS). This approach combines the excellence of both PSO and TS. This is different from the existing methods since the procedure adaptively incorporates information about Tabu lists into PSO algorithm. The proposed algorithm outperforms other algorithms in the aspects of performance and scalability. The experimental results manifest that the proposed hybrid method is effective and efficient in finding near optimal schedule length.</abstract><pub>IEEE</pub><doi>10.1109/ICETET.2008.245</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-0477 |
ispartof | 2008 First International Conference on Emerging Trends in Engineering and Technology, 2008, p.384-389 |
issn | 2157-0477 2157-0485 |
language | eng |
recordid | cdi_ieee_primary_4579929 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis DAG Scheduling Optimal scheduling Particle swarm optimization Processor scheduling Program processors Schedules Scheduling Tabu Search Task Scheduling |
title | DAG Scheduling on Cluster of Workstations Using Hybrid Particle Swarm Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DAG%20Scheduling%20on%20Cluster%20of%20Workstations%20Using%20Hybrid%20Particle%20Swarm%20Optimization&rft.btitle=2008%20First%20International%20Conference%20on%20Emerging%20Trends%20in%20Engineering%20and%20Technology&rft.au=Padmavathi,%20S.&rft.date=2008-07&rft.spage=384&rft.epage=389&rft.pages=384-389&rft.issn=2157-0477&rft.eissn=2157-0485&rft_id=info:doi/10.1109/ICETET.2008.245&rft.eisbn=0769532675&rft.eisbn_list=9780769532677&rft_dat=%3Cieee_CHZPO%3E4579929%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-c7f73a4637cbbc678264d1d13592d055666f1acac87dfb0896cdccd5dad1bc193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4579929&rfr_iscdi=true |