Loading…

Manifold learning using robust Graph Laplacian for interactive image search

Interactive image search or relevance feedback is the process which helps a user refining his query and finding difficult target categories. This consists in partially labeling a very small fraction of an image database and iteratively refining a decision rule using both the labeled and unlabeled da...

Full description

Saved in:
Bibliographic Details
Main Authors: Sahbi, H., Etyngier, P., Audibert, J.-Y., Keriven, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Sahbi, H.
Etyngier, P.
Audibert, J.-Y.
Keriven, R.
description Interactive image search or relevance feedback is the process which helps a user refining his query and finding difficult target categories. This consists in partially labeling a very small fraction of an image database and iteratively refining a decision rule using both the labeled and unlabeled data. Training of this decision rule is referred to as transductive learning. Our work is an original approach for relevance feedback based on Graph Laplacian. We introduce a new Graph Laplacian which makes it possible to robustly learn the embedding, of the manifold enclosing the dataset, via a diffusion map. Our approach is three-folds: it allows us (i) to integrate all the unlabeled images in the decision process (ii) to robustly capture the topology of the image set and (iii) to perform the search process inside the manifold. Relevance feedback experiments were conducted on simple databases including Olivetti and Swedish as well as challenging and large scale databases including Corel. Comparisons show clear and consistent gain, of our graph Laplacian method, with respect to state-of-the art relevance feedback approaches.
doi_str_mv 10.1109/CVPR.2008.4587625
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4587625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4587625</ieee_id><sourcerecordid>4587625</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1995-d398eb1e97efbdf0309e9aa1b005ded472e74bf6c53d01ab8a5175bf25c0bc963</originalsourceid><addsrcrecordid>eNpVUM1KxDAYjKjgsvYBxEteoDX_bY5SdBUriqjX5Uv6ZTdS25J2Bd_eFffiHGaYwwzDEHLBWcE5s1f1-_NLIRirCqWr0gh9RDJbVlwJpYRQUhz_80KfkAVnRubGcntGsmn6YHsoLQ03C_LwCH0MQ9fSDiH1sd_Q3fTLaXC7aaarBOOWNjB24CP0NAyJxn7GBH6OX0jjJ2yQTvus356T0wDdhNlBl-Tt9ua1vsubp9V9fd3kkVur81baCh1HW2JwbWCSWbQA3DGmW2xVKbBULhivZcs4uAo0L7ULQnvmvDVySS7_eiMirse035C-14c75A_Tu1HI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Manifold learning using robust Graph Laplacian for interactive image search</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sahbi, H. ; Etyngier, P. ; Audibert, J.-Y. ; Keriven, R.</creator><creatorcontrib>Sahbi, H. ; Etyngier, P. ; Audibert, J.-Y. ; Keriven, R.</creatorcontrib><description>Interactive image search or relevance feedback is the process which helps a user refining his query and finding difficult target categories. This consists in partially labeling a very small fraction of an image database and iteratively refining a decision rule using both the labeled and unlabeled data. Training of this decision rule is referred to as transductive learning. Our work is an original approach for relevance feedback based on Graph Laplacian. We introduce a new Graph Laplacian which makes it possible to robustly learn the embedding, of the manifold enclosing the dataset, via a diffusion map. Our approach is three-folds: it allows us (i) to integrate all the unlabeled images in the decision process (ii) to robustly capture the topology of the image set and (iii) to perform the search process inside the manifold. Relevance feedback experiments were conducted on simple databases including Olivetti and Swedish as well as challenging and large scale databases including Corel. Comparisons show clear and consistent gain, of our graph Laplacian method, with respect to state-of-the art relevance feedback approaches.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424422425</identifier><identifier>ISBN: 1424422426</identifier><identifier>EISBN: 9781424422432</identifier><identifier>EISBN: 1424422434</identifier><identifier>DOI: 10.1109/CVPR.2008.4587625</identifier><language>eng</language><publisher>IEEE</publisher><subject>Displays ; Feedback ; Image databases ; Image retrieval ; Labeling ; Laplace equations ; Radio frequency ; Robustness ; Telecommunications ; Topology</subject><ispartof>2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4587625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4587625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sahbi, H.</creatorcontrib><creatorcontrib>Etyngier, P.</creatorcontrib><creatorcontrib>Audibert, J.-Y.</creatorcontrib><creatorcontrib>Keriven, R.</creatorcontrib><title>Manifold learning using robust Graph Laplacian for interactive image search</title><title>2008 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Interactive image search or relevance feedback is the process which helps a user refining his query and finding difficult target categories. This consists in partially labeling a very small fraction of an image database and iteratively refining a decision rule using both the labeled and unlabeled data. Training of this decision rule is referred to as transductive learning. Our work is an original approach for relevance feedback based on Graph Laplacian. We introduce a new Graph Laplacian which makes it possible to robustly learn the embedding, of the manifold enclosing the dataset, via a diffusion map. Our approach is three-folds: it allows us (i) to integrate all the unlabeled images in the decision process (ii) to robustly capture the topology of the image set and (iii) to perform the search process inside the manifold. Relevance feedback experiments were conducted on simple databases including Olivetti and Swedish as well as challenging and large scale databases including Corel. Comparisons show clear and consistent gain, of our graph Laplacian method, with respect to state-of-the art relevance feedback approaches.</description><subject>Displays</subject><subject>Feedback</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Labeling</subject><subject>Laplace equations</subject><subject>Radio frequency</subject><subject>Robustness</subject><subject>Telecommunications</subject><subject>Topology</subject><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><isbn>9781424422432</isbn><isbn>1424422434</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUM1KxDAYjKjgsvYBxEteoDX_bY5SdBUriqjX5Uv6ZTdS25J2Bd_eFffiHGaYwwzDEHLBWcE5s1f1-_NLIRirCqWr0gh9RDJbVlwJpYRQUhz_80KfkAVnRubGcntGsmn6YHsoLQ03C_LwCH0MQ9fSDiH1sd_Q3fTLaXC7aaarBOOWNjB24CP0NAyJxn7GBH6OX0jjJ2yQTvus356T0wDdhNlBl-Tt9ua1vsubp9V9fd3kkVur81baCh1HW2JwbWCSWbQA3DGmW2xVKbBULhivZcs4uAo0L7ULQnvmvDVySS7_eiMirse035C-14c75A_Tu1HI</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Sahbi, H.</creator><creator>Etyngier, P.</creator><creator>Audibert, J.-Y.</creator><creator>Keriven, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>Manifold learning using robust Graph Laplacian for interactive image search</title><author>Sahbi, H. ; Etyngier, P. ; Audibert, J.-Y. ; Keriven, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1995-d398eb1e97efbdf0309e9aa1b005ded472e74bf6c53d01ab8a5175bf25c0bc963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Displays</topic><topic>Feedback</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Labeling</topic><topic>Laplace equations</topic><topic>Radio frequency</topic><topic>Robustness</topic><topic>Telecommunications</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahbi, H.</creatorcontrib><creatorcontrib>Etyngier, P.</creatorcontrib><creatorcontrib>Audibert, J.-Y.</creatorcontrib><creatorcontrib>Keriven, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sahbi, H.</au><au>Etyngier, P.</au><au>Audibert, J.-Y.</au><au>Keriven, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Manifold learning using robust Graph Laplacian for interactive image search</atitle><btitle>2008 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><eisbn>9781424422432</eisbn><eisbn>1424422434</eisbn><abstract>Interactive image search or relevance feedback is the process which helps a user refining his query and finding difficult target categories. This consists in partially labeling a very small fraction of an image database and iteratively refining a decision rule using both the labeled and unlabeled data. Training of this decision rule is referred to as transductive learning. Our work is an original approach for relevance feedback based on Graph Laplacian. We introduce a new Graph Laplacian which makes it possible to robustly learn the embedding, of the manifold enclosing the dataset, via a diffusion map. Our approach is three-folds: it allows us (i) to integrate all the unlabeled images in the decision process (ii) to robustly capture the topology of the image set and (iii) to perform the search process inside the manifold. Relevance feedback experiments were conducted on simple databases including Olivetti and Swedish as well as challenging and large scale databases including Corel. Comparisons show clear and consistent gain, of our graph Laplacian method, with respect to state-of-the art relevance feedback approaches.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2008.4587625</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8
issn 1063-6919
language eng
recordid cdi_ieee_primary_4587625
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Displays
Feedback
Image databases
Image retrieval
Labeling
Laplace equations
Radio frequency
Robustness
Telecommunications
Topology
title Manifold learning using robust Graph Laplacian for interactive image search
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Manifold%20learning%20using%20robust%20Graph%20Laplacian%20for%20interactive%20image%20search&rft.btitle=2008%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Sahbi,%20H.&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781424422425&rft.isbn_list=1424422426&rft_id=info:doi/10.1109/CVPR.2008.4587625&rft.eisbn=9781424422432&rft.eisbn_list=1424422434&rft_dat=%3Cieee_6IE%3E4587625%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1995-d398eb1e97efbdf0309e9aa1b005ded472e74bf6c53d01ab8a5175bf25c0bc963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4587625&rfr_iscdi=true