Loading…

A fast local descriptor for dense matching

We introduce a novel local image descriptor designed for dense wide-baseline matching purposes. We feed our descriptors to a graph-cuts based dense depth map estimation algorithm and this yields better wide-baseline performance than the commonly used correlation windows for which the size is hard to...

Full description

Saved in:
Bibliographic Details
Main Authors: Tola, E., Lepetit, V., Fua, P.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1813-f8d45e427e032316277b36fa6912ecd9965617b6f5abb9ae4a9ab193fae0d0493
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Tola, E.
Lepetit, V.
Fua, P.
description We introduce a novel local image descriptor designed for dense wide-baseline matching purposes. We feed our descriptors to a graph-cuts based dense depth map estimation algorithm and this yields better wide-baseline performance than the commonly used correlation windows for which the size is hard to tune. As a result, unlike competing techniques that require many high-resolution images to produce good reconstructions, our descriptor can compute them from pairs of low-quality images such as the ones captured by video streams. Our descriptor is inspired from earlier ones such as SIFT and GLOH but can be computed much faster for our purposes. Unlike SURF which can also be computed efficiently at every pixel, it does not introduce artifacts that degrade the matching performance. Our approach was tested with ground truth laser scanned depth maps as well as on a wide variety of image pairs of different resolutions and we show that good reconstructions are achieved even with only two low quality images.
doi_str_mv 10.1109/CVPR.2008.4587673
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4587673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4587673</ieee_id><sourcerecordid>4587673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1813-f8d45e427e032316277b36fa6912ecd9965617b6f5abb9ae4a9ab193fae0d0493</originalsourceid><addsrcrecordid>eNpVj0tLxEAQhEdUcFnzA8TLnIXE6el5ZI5L8AULiqjXpZPp0Uj2QSYX_70B92JBUXyXKkqIK1AVgAq3zcfLa6WVqitja-88nogi-BqMNkZrg_r0H2t7JhagHJYuQLgQRc7fapax6MAtxM1KJsqTHPYdDTJy7sb-MO1HmWZH3mWWW5q6r373eSnOEw2Zi2Muxfv93VvzWK6fH56a1brsoAYsUx2NZaM9K9QITnvfoks072vuYgjOOvCtS5baNhAbCtRCwESsojIBl-L6r7dn5s1h7Lc0_myOb_EXxsZEJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fast local descriptor for dense matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tola, E. ; Lepetit, V. ; Fua, P.</creator><creatorcontrib>Tola, E. ; Lepetit, V. ; Fua, P.</creatorcontrib><description>We introduce a novel local image descriptor designed for dense wide-baseline matching purposes. We feed our descriptors to a graph-cuts based dense depth map estimation algorithm and this yields better wide-baseline performance than the commonly used correlation windows for which the size is hard to tune. As a result, unlike competing techniques that require many high-resolution images to produce good reconstructions, our descriptor can compute them from pairs of low-quality images such as the ones captured by video streams. Our descriptor is inspired from earlier ones such as SIFT and GLOH but can be computed much faster for our purposes. Unlike SURF which can also be computed efficiently at every pixel, it does not introduce artifacts that degrade the matching performance. Our approach was tested with ground truth laser scanned depth maps as well as on a wide variety of image pairs of different resolutions and we show that good reconstructions are achieved even with only two low quality images.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781424422425</identifier><identifier>ISBN: 1424422426</identifier><identifier>EISBN: 9781424422432</identifier><identifier>EISBN: 1424422434</identifier><identifier>DOI: 10.1109/CVPR.2008.4587673</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; Computer vision ; Feeds ; Histograms ; Image reconstruction ; Laboratories ; Layout ; Pixel ; Robustness ; Yield estimation</subject><ispartof>2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1813-f8d45e427e032316277b36fa6912ecd9965617b6f5abb9ae4a9ab193fae0d0493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4587673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4587673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tola, E.</creatorcontrib><creatorcontrib>Lepetit, V.</creatorcontrib><creatorcontrib>Fua, P.</creatorcontrib><title>A fast local descriptor for dense matching</title><title>2008 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>We introduce a novel local image descriptor designed for dense wide-baseline matching purposes. We feed our descriptors to a graph-cuts based dense depth map estimation algorithm and this yields better wide-baseline performance than the commonly used correlation windows for which the size is hard to tune. As a result, unlike competing techniques that require many high-resolution images to produce good reconstructions, our descriptor can compute them from pairs of low-quality images such as the ones captured by video streams. Our descriptor is inspired from earlier ones such as SIFT and GLOH but can be computed much faster for our purposes. Unlike SURF which can also be computed efficiently at every pixel, it does not introduce artifacts that degrade the matching performance. Our approach was tested with ground truth laser scanned depth maps as well as on a wide variety of image pairs of different resolutions and we show that good reconstructions are achieved even with only two low quality images.</description><subject>Computational efficiency</subject><subject>Computer vision</subject><subject>Feeds</subject><subject>Histograms</subject><subject>Image reconstruction</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Pixel</subject><subject>Robustness</subject><subject>Yield estimation</subject><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><isbn>9781424422432</isbn><isbn>1424422434</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj0tLxEAQhEdUcFnzA8TLnIXE6el5ZI5L8AULiqjXpZPp0Uj2QSYX_70B92JBUXyXKkqIK1AVgAq3zcfLa6WVqitja-88nogi-BqMNkZrg_r0H2t7JhagHJYuQLgQRc7fapax6MAtxM1KJsqTHPYdDTJy7sb-MO1HmWZH3mWWW5q6r373eSnOEw2Zi2Muxfv93VvzWK6fH56a1brsoAYsUx2NZaM9K9QITnvfoks072vuYgjOOvCtS5baNhAbCtRCwESsojIBl-L6r7dn5s1h7Lc0_myOb_EXxsZEJA</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Tola, E.</creator><creator>Lepetit, V.</creator><creator>Fua, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200806</creationdate><title>A fast local descriptor for dense matching</title><author>Tola, E. ; Lepetit, V. ; Fua, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1813-f8d45e427e032316277b36fa6912ecd9965617b6f5abb9ae4a9ab193fae0d0493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational efficiency</topic><topic>Computer vision</topic><topic>Feeds</topic><topic>Histograms</topic><topic>Image reconstruction</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Pixel</topic><topic>Robustness</topic><topic>Yield estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Tola, E.</creatorcontrib><creatorcontrib>Lepetit, V.</creatorcontrib><creatorcontrib>Fua, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tola, E.</au><au>Lepetit, V.</au><au>Fua, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fast local descriptor for dense matching</atitle><btitle>2008 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2008-06</date><risdate>2008</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781424422425</isbn><isbn>1424422426</isbn><eisbn>9781424422432</eisbn><eisbn>1424422434</eisbn><abstract>We introduce a novel local image descriptor designed for dense wide-baseline matching purposes. We feed our descriptors to a graph-cuts based dense depth map estimation algorithm and this yields better wide-baseline performance than the commonly used correlation windows for which the size is hard to tune. As a result, unlike competing techniques that require many high-resolution images to produce good reconstructions, our descriptor can compute them from pairs of low-quality images such as the ones captured by video streams. Our descriptor is inspired from earlier ones such as SIFT and GLOH but can be computed much faster for our purposes. Unlike SURF which can also be computed efficiently at every pixel, it does not introduce artifacts that degrade the matching performance. Our approach was tested with ground truth laser scanned depth maps as well as on a wide variety of image pairs of different resolutions and we show that good reconstructions are achieved even with only two low quality images.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2008.4587673</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, p.1-8
issn 1063-6919
language eng
recordid cdi_ieee_primary_4587673
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational efficiency
Computer vision
Feeds
Histograms
Image reconstruction
Laboratories
Layout
Pixel
Robustness
Yield estimation
title A fast local descriptor for dense matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fast%20local%20descriptor%20for%20dense%20matching&rft.btitle=2008%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Tola,%20E.&rft.date=2008-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781424422425&rft.isbn_list=1424422426&rft_id=info:doi/10.1109/CVPR.2008.4587673&rft.eisbn=9781424422432&rft.eisbn_list=1424422434&rft_dat=%3Cieee_6IE%3E4587673%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1813-f8d45e427e032316277b36fa6912ecd9965617b6f5abb9ae4a9ab193fae0d0493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4587673&rfr_iscdi=true